The effect of temperature on abnormal grain growth in low carbon steel

1984 ◽  
Vol 18 (4) ◽  
pp. 305-307 ◽  
Author(s):  
J.A. Kowalik ◽  
A.R. Marder
2014 ◽  
Vol 1004-1005 ◽  
pp. 1256-1259
Author(s):  
Shen Bai Zheng ◽  
Shi Jie Liu ◽  
Hong Bin Li ◽  
Bin Feng ◽  
Xue Song Hui

The austenite steel after rolling was radiated by the alternating magnetism, and the effects that alternating magnetic on the austenite transition was studied. The result shows that the alternating magnetism promotes the austenitic grain growth of low carbon steel. If the magnetic field intensity is increased, it could provide better performance of raw materials to cold rolling processing.


2004 ◽  
Vol 467-470 ◽  
pp. 941-948 ◽  
Author(s):  
Kim Verbeken ◽  
Leo Kestens

After primary recrystallization, on further annealing, abnormal grain growth occurred in ultra low carbon steel. Texture evolution was studied by comparing the orientations after complete secondary recrystallization, with on one hand the nuclei for abnormal grain growth and on the other hand the selective growth products of the primary recrystallized matrix. The influence of both mechanisms could be identified in the final texture.


2004 ◽  
Vol 19 (10) ◽  
pp. 2877-2886 ◽  
Author(s):  
Y.J. Lan ◽  
D.Z. Li ◽  
Y.Y. Li

Austenite–ferrite transformation at different isothermal temperatures in low carbon steel was investigated by a two-dimensional cellular automaton approach, which provides a simple solution for the difficult moving boundary problem that governs the ferrite grain growth. In this paper, a classical model for ferrite nucleation at austenite grain boundaries is adopted, and the kinetics of ferrite grain growth is numerically resolved by coupling carbon diffusion process in austenite and austenite–ferrite (γ–α) interface dynamics. The simulated morphology of ferrite grains shows that the γ–α interface is stable. In this cellular automaton model, the γ–α interface mobility and carbon diffusion rate at austenite grain boundaries are assumed to be higher than those in austenite grain interiors. This has influence on the morphology of ferrite grains. Finally, the modeled ferrite transformation kinetics at different isothermal temperatures is compared with the experiments in the literature and the grid size effects of simulated results are investigated by changing the cell length of cellular automaton model in a set of calculations.


2016 ◽  
Vol 48 (2) ◽  
pp. 796-808 ◽  
Author(s):  
Thomas Garcin ◽  
Keiji Ueda ◽  
Matthias Militzer

2017 ◽  
Vol 46 (3) ◽  
pp. 292-300 ◽  
Author(s):  
Xiaobing Li ◽  
Tongsheng Zhang ◽  
Yi Min ◽  
Chengjun Liu ◽  
Maofa Jiang

Sign in / Sign up

Export Citation Format

Share Document