primary recrystallization
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 2)

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1655
Author(s):  
Xin Tian ◽  
Shuang Kuang ◽  
Jie Li ◽  
Jing Guo ◽  
Yunli Feng

An Nb-containing grain-oriented silicon steel was produced through double-stage cold rolling in order to investigate the effect of the heating rate during intermediate annealing on primary recrystallization and decarburization behavior. The microstructure and texture were observed and analyzed by an optical microscope and an electron backscatter diffraction system. A transmission electron microscope was used to observe the precipitation behavior of inhibitors. The decarburization effect during intermediate annealing was also calculated and discussed. The results show that primary recrystallization takes place after intermediate annealing. As the heating rate increases, the average grain size decreases gradually. The textures of {411}<148> and {111}<112> were found to be the strongest along the thickness direction in all of the annealed specimens and are mainly surrounded by HEGB and HAGB (> 45°). A large number of inhibitors with the size of 14~20 nm precipitate are distributed evenly in the matrix. The above results indicate that the higher heating rate during intermediate annealing contributes to both an excellent microstructure and magnetic properties. From the calculation, as the heating rate increases, decarbonization tends to proceed in the insulation stage, and the total amount of carbonization declines.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1209
Author(s):  
Xin Tian ◽  
Shuang Kuang ◽  
Jie Li ◽  
Shuai Liu ◽  
Yunli Feng

In this study, the effects of decarburization annealing time on the primary recrystallization microstructure, the texture and the magnetic properties of the final product of 0.047% Nb low-temperature grain-oriented silicon steel were investigated by means of OM, EBSD and XRD. The results show that when the decarburization annealing condition is 850 °C for 5 min, the uniform fine primary recrystallization microstructure can be obtained, and the content of favorable texture {111} < 112 > is the highest while that of unfavorable texture {110} < 112 > is the lowest, which is mostly distributed near the central layer. At the same time, there are the most high-energy grain boundaries with high mobility in the primary recrystallization microstructure of the sample annealed at 850 °C for 5 min, and the ∑9 boundary has the highest percentage of grain boundaries. The samples with different decarburization annealing time were annealed at high temperature. It was found that perfect secondary recrystallization occurred after high-temperature annealing when the decarburization annealing condition was 850 °C for 5 min. The texture component was characterized by a single Goss texture, and the size of the Goss grain reached 4.6mm. Under such annealing conditions, the sample obtained shows the optimal soft magnetic properties of B800 = 1.89T and P1.7/50 = 1.33 w/kg.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5383
Author(s):  
Zhanyi Xu ◽  
Yuhui Sha ◽  
Zhenghua He ◽  
Fang Zhang ◽  
Wei Liu ◽  
...  

Matrix microstructure and texture controlling is an important way to optimize Goss ({110}<001>) abnormal grain growth (AGG) in high magnetic induction grain-oriented silicon (Hi-B) steel during primary recrystallization. In the present work, a matrix with homogeneous grain size and favorable texture components was obtained through two-stage normalized annealing followed by primary recrystallization. Furthermore, secondary recrystallization was performed for sharp Goss orientation by slow heating and purified annealing. It was found that plenty of island grains, which occurred and disappeared gradually, accompanied the process of AGG. Through analyzing the evolution of microstructure and texture, we realized that the formation of island grains was related to the large-size grains in matrix, and the elimination of that was attributed to the special grain boundaries which satisfied both coincident site lattice (CSL) and high-energy (HE) models. It was essential to control grain size and favorable orientations in matrix comprehensively for the high-efficient abnormal growing of sharp Goss orientation, through which excellent magnetic properties could be obtained simultaneously.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3818
Author(s):  
Fan Lei ◽  
Yuhui Sha ◽  
Zhenghua He ◽  
Fang Zhang ◽  
Liang Zuo

Herein, a simple and efficient method is proposed for fabricating Fe81Ga19 alloy thin sheets with a high magnetostriction coefficient. Sharp Goss texture ({110}<001>) was successfully produced in the sheets by rapid secondary recrystallization induced by nanosized NbC particles at low temperatures. Numerous NbC precipitates (size ~90 nm) were obtained after hot rolling, intermediate annealing, and primary recrystallization annealing. The relatively higher quantity of nanosized NbC precipitates with 0.22 mol% resulted in finer and uniform grains (~10 μm) through thickness after primary recrystallization annealing. There was a slow coarsening of the NbC precipitates, from 104 nm to 130 nm, as the temperature rose from 850 °C to 900 °C in a pure nitrogen atmosphere, as well as a primary recrystallization textured by strong γ fibers with a peak at {111} <112> favoring the development of secondary recrystallization of Goss texture at a temperature of 850 °C. Matching of the appropriate inhibitor characteristics and primary recrystallization texture guaranteed rapid secondary recrystallization at temperatures lower than 950 °C. A high magnetostriction coefficient of 304 ppm was achieved for the Fe81Ga19 sheet after rapid secondary recrystallization.


2021 ◽  
Vol 122 (7) ◽  
pp. 673-680
Author(s):  
N. V. Sakharov ◽  
V. N. Chuvil’deev

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 189
Author(s):  
Bing Fu ◽  
Li Xiang ◽  
Jia-Long Qiao ◽  
Hai-Jun Wang ◽  
Jing Liu ◽  
...  

Based on low-temperature high-permeability grain-oriented silicon steel designed with an initial nitrogen content of 0.0055% and produced by the thin slab casting and rolling process, the effect of total nitrogen content and nitriding temperature on primary recrystallization microstructure and texture were studied by optical microscope, scanning electron microscope, transmission electron microscope, and electron backscatter diffraction. The nitriding temperature affects the primary recrystallization behaviors significantly, while the total nitrogen content has a small effect. As the nitriding temperature is 750–850 °C, the average primary grain size and its inhomogeneity factor are about 26.58–26.67 μm and 0.568–0.572, respectively. Moreover, the texture factor is mostly between 0.15 and 0.40. Because of the relatively sufficient inhibition ability of inherent inhibitors in a decarburized sheet, the nitriding temperature (750–850 °C) affects the primary recrystallization microstructure and texture slightly. However, as the nitriding temperature rises to 900–950 °C, the average primary grain size and its inhomogeneity factor increase to 27.75–28.26 μm and 0.575–0.578, respectively. Furthermore, because of the great increase on the area fraction of {112} <110> grains, part of texture factor is increased sharply. Therefore, in order to obtain better primary grain size and homogeneity, better texture composition, and stability of the decarburized sheet, the optimal nitriding temperature is 750–850 °C.


Sign in / Sign up

Export Citation Format

Share Document