Fluvial response to on-going tectonism and base-level changes, lower Amargosa River, Southern Death Valley, California

1984 ◽  
Vol 38 (1-4) ◽  
pp. 107-125 ◽  
Author(s):  
Paul Ray Butler
2019 ◽  
Author(s):  
Helen W. Beeson ◽  
Scott W. McCoy

Abstract. Nonuniform rock uplift in the form of tilting has been documented in convergent margins, postorogenic landscapes, and extensional provinces. Despite the prevalence of tilting, the transient fluvial response to tilting has not been quantified such that tectonic histories involving tilt can be extracted from river network forms. We used numerical landscape evolution models to characterize the transient erosional response of a river network initially at equilibrium to a punctuated rigid-block tilting event. Using a model river network composed of linked 1-D river longitudinal profile evolution models, we show that the transient response to punctuated tilting creates characteristic forms or geomorphic signatures in mainstem and tributary profiles that are distinct from those generated by other perturbations such as a step change in uniform rock uplift rate or major truncation of headwater drainage area that push a river network away from equilibrium. These signatures include 1) a knickpoint in the mainstem that separates a downstream profile with uniform steepness (i.e., channel gradient normalized for drainage area) from an upstream profile with nonuniform steepness, with the mainstem above the knickpoint more out of equilibrium than the tributaries following forward tilting towards the outlet, versus the mainstem less out of equilibrium than the tributaries following back tilting towards the headwaters; 2) a pattern of mainstem incision below paleotopography markers that increases linearly up to the mainstem knickpoint, or vice-versa following back tilting; and 3) tributary knickzones with nonuniform steepness that mirrors that of the mainstem upstream of the slope-break knickpoint. Immediately after tilting, knickpoints form at the mainstem outlet and each mainstem-tributary junction. Time since tilting onset is recorded by mainstem knickpoint location relative to base level and by the upstream end of tributary knickzones relative to tributary-mainstem junctions. Tilt magnitude is recorded in the spatial gradient of mainstem incision depth and, in the forward tilting case, by tributary knickzone drop height. Heterogeneous lithology can modulate the transient response to tilting and, post-tilt, knickpoints can form anywhere in a stream network where more erodible rock occurs upstream of less erodible rock. With a full 2-D model, we show that stream segments flowing in the tilt direction have elevated channel gradient during the transient and that the magnitude of tilt can be recovered from the relationship between channel gradient and azimuth, but only shortly after tilting. Tilting is also reflected in network topologic changes via stream capture oriented in the direction of tilt. As an example of how these geomorphic signatures can be used in concert to estimate timing and magnitude of a tilting event, we show a sample of rivers draining the west slope of the Sierra Nevada, California, USA, a range long thought to have been tilted westward towards river outlets in the late Cenozoic.


2020 ◽  
Vol 8 (1) ◽  
pp. 123-159
Author(s):  
Helen W. Beeson ◽  
Scott W. McCoy

Abstract. Nonuniform rock uplift in the form of tilting has been documented in convergent margins, postorogenic landscapes, and extensional provinces. Despite the prevalence of tilting, the transient fluvial response to tilting has not been quantified such that tectonic histories involving tilt can be extracted from river network forms. We used numerical landscape evolution models to characterize the transient erosional response of a river network initially at equilibrium to rapid tilting. We focus on the case of punctuated rigid-block tilting, though we explore longer-duration tilting events and nonuniform uplift that deviates from perfect rigid-block tilting such as that observed when bending an elastic plate or with more pronounced internal deformation of a fault-bounded block. Using a model river network composed of linked 1-D river longitudinal profile evolution models, we show that the transient response to a punctuated rigid-block tilting event creates a suite of characteristic forms or geomorphic signatures in mainstem and tributary profiles that collectively are distinct from those generated by other perturbations, such as a step change in the uniform rock uplift rate or a major truncation of the headwater drainage area, that push a river network away from equilibrium. These signatures include (1) a knickpoint in the mainstem that separates a downstream profile with uniform steepness (i.e., channel gradient normalized for drainage area) from an upstream profile with nonuniform steepness, with the mainstem above the knickpoint more out of equilibrium than the tributaries following forward tilting toward the outlet, versus the mainstem less out of equilibrium than the tributaries following back tilting toward the headwaters; (2) a pattern of mainstem incision below paleo-topography markers that increases linearly up to the mainstem knickpoint or vice versa following back tilting; and (3) tributary knickzones with nonuniform steepness that mirrors that of the mainstem upstream of the slope-break knickpoint. Immediately after a punctuated tilting event, knickpoints form at the mainstem outlet and each mainstem–tributary junction. Time since the cessation of rapid tilting is recorded by the mainstem knickpoint location relative to base level and by the upstream end of tributary knickzones relative to the mainstem–tributary junction. Tilt magnitude is recorded in the spatial gradient of mainstem incision depth and, in the forward tilting case, also by the spatial gradient in tributary knickzone drop height. Heterogeneous lithology can modulate the transient response to tilting and, post tilt, knickpoints can form anywhere in a stream network where more erodible rock occurs upstream of less erodible rock. With a full 2-D model, we show that stream segments flowing in the tilt direction have elevated channel gradient early in the transient response. Tilting is also reflected in network topologic changes via stream capture oriented in the direction of tilt. As an example of how these geomorphic signatures can be used in concert with each other to estimate the timing and magnitude of a tilting event, we show a sample of rivers from two field sites: the Sierra Nevada, California, USA, and the Sierra San Pedro Mártir, Baja California, Mexico, two ranges thought to have been tilted westward toward river outlets in the late Cenozoic.


Author(s):  
E. Rau ◽  
N. Karelin ◽  
V. Dukov ◽  
M. Kolomeytsev ◽  
S. Gavrikov ◽  
...  

There are different methods and devices for the increase of the videosignal information in SEM. For example, with the help of special pure electronic [1] and opto-electronic [2] systems equipotential areas on the specimen surface in SEM were obtained. This report generalizes quantitative universal method for space distribution representation of research specimen parameter by contour equal signal lines. The method is based on principle of comparison of information signal value with the fixed levels.Transformation image system for obtaining equal signal lines maps was developed in two versions:1)In pure electronic system [3] it is necessary to compare signal U (see Fig.1-a), which gives potential distribution on specimen surface along each scanning line with fixed base level signals εifor obtaining quantitative equipotential information on solid state surface. The amplitude analyzer-comparator gives flare sport videopulses at any fixed coordinate and any instant time when initial signal U is equal to one of the base level signals ε.


Author(s):  
F. D. Shields, Jr. ◽  
Eddy J. Langendoen ◽  
Robert E. Thomas ◽  
Andrew Simon
Keyword(s):  

2003 ◽  
Vol 21 (4) ◽  
pp. 302-306 ◽  
Author(s):  
C. S. Fowler ◽  
P. Esteves ◽  
G. Goad ◽  
B. Helmer ◽  
K. Watterson

2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>


Sign in / Sign up

Export Citation Format

Share Document