High temperature equilibrium of atomic disorder in SnS

1966 ◽  
Vol 4 (1) ◽  
pp. iii
Author(s):  
Hans Rau
Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5830
Author(s):  
Andrzej Ślebarski ◽  
Maciej M. Maśka

We investigated the effect of enhancement of superconducting transition temperature Tc by nonmagnetic atom disorder in the series of filled skutterudite-related compounds (La3M4Sn13, Ca3Rh4Sn13, Y5Rh6Sn18, Lu5Rh6Sn18; M= Co, Ru, Rh), where the atomic disorder is generated by various defects or doping. We have shown that the disorder on the coherence length scale ξ in these nonmagnetic quasiskutterudite superconductors additionally generates a non-homogeneous, high-temperature superconducting phase with Tc⋆>Tc (dilute disorder scenario), while the strong fluctuations of stoichiometry due to increasing doping can rapidly increase the superconducting transition temperature of the sample even to the value of Tc⋆∼2Tc (dense disorder leading to strong inhomogeneity). This phenomenon seems to be characteristic of high-temperature superconductors and superconducting heavy fermions, and recently have received renewed attention. We experimentally documented the stronger lattice stiffening of the inhomogeneous superconducting phase Tc⋆ in respect to the bulk Tc one and proposed a model that explains the Tc⋆>Tc behavior in the series of nonmagnetic skutterudite-related compounds.


1991 ◽  
Vol 163 (1) ◽  
pp. 231-240 ◽  
Author(s):  
V. I. Tsidilkovskii ◽  
I. A. Leonidov ◽  
A. A. Lakhtin ◽  
V. A. Mezrin

2012 ◽  
Vol 245 ◽  
pp. 346-351
Author(s):  
Radu Dan Rugescu ◽  
Florin Radu Bacaran

The observation that the chemical equilibrium between the combustion products of solid propellant samples within static calorimeters is unexpectedly freezing at high temperatures is proved through a general numerical simulation of the isochoric cooling with chemical reactions between the gaseous products. A proprietary, direct linearization method of thermochemical computation is used that enables following any chemical reaction in equilibrium with high convergence. The observed chemical freezing within calorimeters is proved.


Sign in / Sign up

Export Citation Format

Share Document