Modeling homogeneous and heterogeneous metal/semiconductor interface reactions with photoemission and angle-resolved auger spectroscopy

1986 ◽  
Vol 168 (1-3) ◽  
pp. 309-322 ◽  
Author(s):  
M. Del Guidice ◽  
M. Grioni ◽  
J.J. Joyce ◽  
M.W. Ruckman ◽  
S.A. Chambers ◽  
...  
1986 ◽  
Vol 168 (1-3) ◽  
pp. A121
Author(s):  
M. Del Giudice ◽  
M. Grioni ◽  
J.J. Joyce ◽  
M.W. Ruckman ◽  
S.A. Chambers ◽  
...  

1991 ◽  
Vol 237 ◽  
Author(s):  
R. M. Walser ◽  
Byung-Hak Lee ◽  
Alaka Valanju ◽  
Winston Win ◽  
M. F. Becker

ABSTRACTWe report the first kinetic study of metal-semiconductor interface reactions using in-situ, time resolved, laser interferometry. Diffusion couples with Co/Ge thicknesses of 1500 Å/1500 Å were sputter deposited on silicon wafers, and vacuum-annealed at temperatures between 300°C-400°C. Under these conditions polycrystalline CoGe was expected to form [1]. Real time laser (HeNe 6328 Å) interferograms for each anneal were recorded in-situ. These data were supplemented by information from AES and X-ray.For temperatures below 400°C the diffusion controlled formation of CoGe was observed. The composition was confirmed by Auger depth profiling that showed uniform Co and Ge concentrations when the reaction went to completion. The well defined interferences fringes were formed by the dissolution of amorphous Ge. The activation energy = 1.6 eV for the formation of CoGe were determined with precision from the temperature dependence of the time required to anneal the fixed λ/4 distance between adjacent minima and maxima of the interferogram. We discuss the evidence for formation of an intermediate Co-rich compound following the initial diffusion of Co into Ge. The results of these experiments indicate that optical interferometry will be a valuable adjunct to other techniques used to study metal-semiconductor interface reactions.


Author(s):  
John Silcox

Determination of the microstructure and microchemistry of small features often provides the insight needed for the understanding of processes in real materials. In many cases, it is not adequate to use microscopy alone. Microdiffraction and microspectroscopic information such as EELS, X-ray microprobe analysis and Auger spectroscopy can all contribute vital parts of the picture. For a number of reasons, dedicated STEM offers considerable promise as a quantitative instrument. In this paper, we review progress towards effective quantitative use of STEM with illustrations drawn from studies of high Tc superconductors, compound semiconductors and metallization of H-terminated silicon.Intrinsically, STEM is a quantitative instrument. Images are acquired directly by detectors in serial mode which is particularly convenient for digital image acquisition, control and display. The VG HB501A at Cornell has been installed in a particularly stable electromagnetic, vibration and acoustic environment. Care has been paid to achieving UHV conditions (i.e., 10-10 Torr). Finally, it has been interfaced with a VAX 3200 work station by Kirkland. This permits, for example, the acquisition of bright field (or energy loss) images and dark field images simultaneously as quantitative arrays in perfect registration.


Author(s):  
A. J. Bleeker ◽  
P. Kruit

Combining of the high spatial resolution of a Scanning Transmission Electron Microscope and the wealth of information from the secondary electrons and Auger spectra opens up new possibilities for materials research. In a prototype instrument at the Delft University of Technology we have shown that it is possible from the optical point of view to combine STEM and Auger spectroscopy [1]. With an Electron Energy Loss Spectrometer attached to the microscope it also became possible to perform coincidence measurements between the secondary electron signal and the EELS signal. We measured Auger spectra of carbon aluminium and Argon gas showing energy resolutions better than 1eV [2]. The coincidence measurements on carbon with a time resolution of 5 ns yielded basic insight in secondary electron emission processes [3]. However, for serious Auger spectroscopy, the specimen needs to be in Ultra High Vacuum. ( 10−10 Torr ). At this moment a new setup is in its last phase of construction.


1984 ◽  
Vol 45 (C5) ◽  
pp. C5-275-C5-284
Author(s):  
A. D. Boardman ◽  
A. K. Irving

Sign in / Sign up

Export Citation Format

Share Document