Microtectonics and 39Ar-40Ar dating of high pressure metamorphic rocks of the south Ryukyu Arc and their bearings on the pre-Eocene geodynamic evolution of Eastern Asia

1988 ◽  
Vol 156 (1-2) ◽  
pp. 133-143 ◽  
Author(s):  
M Faure ◽  
P Monié ◽  
O Fabbri
2010 ◽  
Vol 310 (9) ◽  
pp. 916-950 ◽  
Author(s):  
E. Hegner ◽  
R. Klemd ◽  
A. Kroner ◽  
M. Corsini ◽  
D. V. Alexeiev ◽  
...  

Elements ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Lucie Tajčmanová ◽  
Paola Manzotti ◽  
Matteo Alvaro

The mechanisms attending the burial of crustal material and its exhumation before and during the Alpine orogeny are controversial. New mechanical models propose local pressure perturbations deviating from lithostatic pressure as a possible mechanism for creating (ultra-)high-pressure rocks in the Alps. These models challenge the assumption that metamorphic pressure can be used as a measure of depth, in this case implying deep subduction of metamorphic rocks beneath the Alpine orogen. We summarize petro-logical, geochronological and structural data to assess two fundamentally distinct mechanisms of forming (ultra-)high-pressure rocks: deep subduction; or anomalous, non-lithostatic pressure variation. Furthermore, we explore mineral-inclusion barometry to assess the relationship between pressure and depth in metamorphic rocks.


2020 ◽  
Vol 132 (11-12) ◽  
pp. 2611-2630
Author(s):  
Yunshuai Li ◽  
Jianxin Zhang ◽  
Shengyao Yu ◽  
Yanguang Li ◽  
Hu Guo ◽  
...  

Abstract Deciphering the formation and geodynamic evolution of high-pressure (HP) granulites in a collisional orogeny can provide crucial constraints on the geodynamic evolution of subduction-exhumation. To fully exploit the geodynamic potential of metamorphic rocks, it is necessary to constrain the metamorphic ages, although it is difficult to link zircon and monazite ages to metamorphic evolution. A good case study for understanding these geodynamic processes is felsic granulites in the Bashiwake area, South Altyn Tagh. Petrographic observations suggest that the studied felsic granulites have suffered multi-stage metamorphism, and the distinct metamorphic events were documented by compositional zoning and high Y + heavy rare earth element (HREE) concentrations in the large garnet porphyroblast. Zircon U-Pb dating yielded two major age clusters: one age cluster at ca. 900 Ma represents the age of the protolith for the felsic granulite, and another age cluster at ca. 500 Ma represents the post-UHT (ultrahigh temperature) stage based on the rare earth element distribution coefficients between zircon and garnet. Meanwhile, in situ monazites U-Pb dating yielded a weighted mean 206Pb/238U age of 482 ± 3.5 Ma, and the monazite U-Pb age was interpreted to be in agreement with the metamorphic zircon rims data, which together with zircon recorded the cooling time after the UHT stage. Whole-rock major and trace elements as well as Sr-Nd isotopes suggest that the protolith of the felsic granulite derived from partial melting of ancient crustal materials with the addition of mantle materials. Integrating these results along with previous studies, we propose that the felsic granulites metamorphosed from the Neoproterozoic granitic rocks, and the granitic rocks with associated mafic-ultramafic rocks suffered a common high-pressure–ultrahigh temperature (HP-UHT) metamorphism and subsequent granulite-facies metamorphism. A tentative model of subduction-relamination was proposed for the geodynamic evolution of the Bashiwake unit, South Altyn Tagh.


Geosphere ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 953-968 ◽  
Author(s):  
Atsushi Noda ◽  
Hiroaki Koge ◽  
Yasuhiro Yamada ◽  
Ayumu Miyakawa ◽  
Juichiro Ashi

Abstract Sandy trench-fill sediments at accretionary margins are commonly scraped off at the frontal wedge and rarely subducted to the depth of high-pressure (HP) metamorphism. However, some ancient exhumed accretionary complexes are associated with high-pressure–low-temperature (HP-LT) metamorphic rocks, such as psammitic schists, which are derived from sandy trench-fill sediments. This study used sandbox analogue experiments to investigate the role of seafloor topography in the transport of trench-fill sediments to depth during subduction. We conducted two different types of experiments, with or without a rigid topographic high (representing a seamount). We used an undeformable backstop that was unfixed to the side wall of the apparatus to allow a seamount to be subducted beneath the overriding plate. In experiments without a seamount, progressive thickening of the accretionary wedge pushed the backstop down, leading to a stepping down of the décollement, narrowing of the subduction channel, and underplating of the wedge with subducting sediment. In contrast, in experiments with a topographic high, the subduction of the topographic high raised the backstop, leading to a stepping up of the décollement and widening of the subduction channel. These results suggest that the subduction of stiff topographic relief beneath an inflexible overriding plate might enable trench-fill sediments to be deeply subducted and to become the protoliths of HP-LT metamorphic rocks.


Sign in / Sign up

Export Citation Format

Share Document