Seismic images of the Brooks Range fold and thrust belt, Arctic Alaska, from an integrated seismic reflection/refraction experiment

1994 ◽  
Vol 232 (1-4) ◽  
pp. 13-30 ◽  
Author(s):  
A. Levander ◽  
G.S. Fuis ◽  
E.S. Wissinger ◽  
W.J. Lutter ◽  
J.S. Oldow ◽  
...  
2020 ◽  
Author(s):  
Alexander Razmadze

<p>Gare Kakheti foothills are located between Lesser Caucasus and Kakheti Ridge and are mainly represented by the series of NEN dipping thrust faults, most of which are associated with fault‐related folds. Gare Kakheti foothills as a part of the Kura foreland fold-and-thrust belt developed formerly as a foreland basin (Oligocene-Lower Miocene) (e.g. Alania et al., 2017). Neogene shallow marine and continental sediments in the Gare Kakheti foothills keep the record on the stratigraphy and structural evolution of the study area during the compressive deformation. Interpreted seismic profiles and structural cross-sections across the Udabno, Tsitsmatiani, and Berebisseri synclines show that they are thrust-top basins. Seismic reflection data reveal the presence of growth fault-propagation folds and some structural wedges (or duplex). The evolution of the Udabno, Tsitsmatiani, and Berebisseri basins is compared with simple models of thrust-top basins whose development is controlled by the kinematics of competing for growth anticlines. Growth anticlines are mainly represented by fault-propagation folds. The geometry of growth strata in associated footwall synclines and the sedimentary infill of thrust-top basins provide information on the thrusting activity in terms of location, geometry, and age.<br>This work was supported by Shota Rustaveli National Science Foundation (SRNSF - #PHDF-19-268).</p><p> </p>


1993 ◽  
Author(s):  
J.M. Murphy ◽  
G.S. Fuis ◽  
A.R. Levander ◽  
W.J. Lutter ◽  
E.E. Criley ◽  
...  

2020 ◽  
Author(s):  
Naoko Kato ◽  
Hiroshi Sato ◽  
Tatsuya Ishiyama

<p>Northern Honshu, Japan, forms a classical example of the trench-arc-backarc basin system. Along the coast of the Sea of Japan, Miocene aborted rifts were developed filled with thick Neogene sediments and form an active fold-and-thrust belt. Devastative crustal earthquakes, such as the Shonai earthquake 1894 (M7), occurs historically. To reveal the relationship between active fault and fold structure with seismogenic source faults is significant for the evaluation of seismic hazards and possible risk. In the Shonai plain, northern Honshu, we performed 2D high-resolution seismic reflection profiling across the active faults. Seismic data was collected by 10 m shot and receiver interval using Enviro vib and Minivib (IVI) to obtain high-resolution image. Along some of the seismic lines, seismic reflection survey was recorded by fixed 800-1000 channels, producing high number of folds. The resultant seismic profiles provide the image of a fold-and-thrust belt developed in the Miocene volcanic rift basin. Former syn-rift faults reactivated as reverse faults and thin-skinned deformation prevails in the post rift sediments forming detachment in the Miocene over pressured mudstone units. Fault-related folds and wedge thrusting is common feature of the shortening deformation. There are two active thrust systems in the Shonai basin. One is known active fault system along the eastern margin of the Shonai plain and the other is an active-blind - thrust located in the central part of the basin. The late Quaternary tectonic movements along this fault was confirmed by the high-resolution seismic profiling. </p>


Sign in / Sign up

Export Citation Format

Share Document