Study of the stability of a difference boundary value problem, approximating the system of equations of acoustics taking thermal conductivity into account

1981 ◽  
Vol 21 (6) ◽  
pp. 89-96
Author(s):  
S.I Serdyukova
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Amar Benkerrouche ◽  
Mohammed Said Souid ◽  
Kanokwan Sitthithakerngkiet ◽  
Ali Hakem

AbstractIn this manuscript, we examine both the existence and the stability of solutions to the implicit boundary value problem of Caputo fractional differential equations of variable order. We construct an example to illustrate the validity of the observed results.


2021 ◽  
pp. 137-145
Author(s):  
A. Kravtsov ◽  
◽  
D. Levkin ◽  
O. Makarov ◽  
◽  
...  

The article presents the theoretical and methodological principles for forecasting and mathematical modeling of possible risks in technological and biotechnological systems. The authors investigated in details the possible approach to the calculation of the goal function and its parameters. Considerable attention is paid to substantiating the correctness of boundary value problems and Cauchy problems. In mechanics, engineering, and biology, Cauchy problems and boundary value problems of differential equations are used to model physical processes. It is important that differential equations have a single physically sound solution. The authors of this article investigate the specific features of boundary value problems and Cauchy problems with boundary conditions in a two-point medium, and determine the conditions for the correctness of such problems in the spaces of power growth functions. The theory of pseudo-differential operators in the space of generalized functions was used to prove the correctness of boundary value problems. The application of the obtained results will make it possible to guarantee the correctness of mathematical models built in conditions of uncertainty and possible risks. As an example of a computational mathematical model that describes the state of the studied object of non-standard shape, the authors considered the boundary value problem of the system of differential equations of thermal conductivity for the embryo under the action of a laser beam. For such a boundary value problem, it is impossible to guarantee the existence and uniqueness of the solution of the system of differential equations. To be sure of the existence of a single solution, it is necessary either not to take into account the three-layer structure of the microbiological object, or to determine the conditions for the correctness of the boundary value problem. Applying the results obtained by the authors, the correctness of the boundary value problem of systems of differential equations of thermal conductivity for the embryo is proved taking into account the three-layer structure of the microbiological object. This makes it possible to increase the accuracy and speed of its implementation on the computer. Key words: forecasting, risk, correctness, boundary value problems, conditions of uncertainty


2003 ◽  
Vol 475 ◽  
pp. 303-331 ◽  
Author(s):  
E. S. BENILOV

We examine the stability of a quasi-geostrophic vortex in a two-layer ocean with a thin upper layer on the f-plane. It is assumed that the vortex has a sign-definite swirl velocity and is localized in the upper layer, whereas the disturbance is present in both layers. The stability boundary-value problem admits three types of normal modes: fast (upper-layer-dominated) modes, responsible for equivalent-barotropic instability, and two slow baroclinic types (mixed- and lower-layer-dominated modes). Fast modes exist only for unrealistically small vortices (with a radius smaller than half of the deformation radius), and this paper is mainly focused on the slow modes. They are examined by expanding the stability boundary-value problem in powers of the ratio of the upper-layer depth to the lower-layer depth. It is demonstrated that the instability of slow modes, if any, is associated with critical levels, which are located at the periphery of the vortex. The complete (sufficient and necessary) stability criterion with respect to slow modes is derived: the vortex is stable if and only if the potential-vorticity gradient at the critical level and swirl velocity are of the same sign. Several vortex profiles are examined, and it is shown that vortices with a slowly decaying periphery are more unstable baroclinically and less barotropically than those with a fast-decaying periphery, with the Gaussian profile being the most stable overall. The asymptotic results are verified by numerical integration of the exact boundary-value problem, and interpreted using oceanic observations.


Author(s):  
Qun Chen

AbstractLet M, N be Riemannian manifolds, f: M → N a harmonic map with potential H, namely, a smooth critical point of the functional EH(f) = ∫M[e(f)−H(f)], where e(f) is the energy density of f. Some results concerning the stability of these maps between spheres and any Riemannian manifold are given. For a general class of M, this paper also gives a result on the constant boundary-value problem which generalizes the result of Karcher-Wood even in the case of the usual harmonic maps. It can also be applied to the static Landau-Lifshitz equations.


Sign in / Sign up

Export Citation Format

Share Document