A mathematical model for the freezing of a water-saturated porous medium

1986 ◽  
Vol 26 (6) ◽  
pp. 91-95
Author(s):  
A.M. Maksimov ◽  
G.G. Tsypkin
2020 ◽  
pp. 86-95 ◽  
Author(s):  
O. V. Ageikina ◽  
V. V. Vorontsov ◽  
R. R. Sufyanov

The relevance of the research processes filtration consolidation due to the place of water-saturated soils in various design solutions related to the exploration, production and transportation of hydrocarbons. It should be noted that the diversity of soils led to the emergence of a wide range of mathematical models, obtained on the basis of generalization of experimental data and various assumptions to simplify engineering calculations. The article presents the results of theoretical and experimental studies of the mathematical model of the consolidation process of a water-saturated porous medium. This model is based on simplifying assumptions that are different from those adopted in well-known solutions. A fundamental approach to the formation of the model was developed on the basis of the kinetic representations of chemical reactions used in solving the environmental problems of epoxidation reactions of olefins. We determined the parameters of the mathematical model of the consolidation process of the saturated porous medium of clayey soil and confirmed its adequacy by the research results. In addition, we established the parameters of the field of non-equilibrium filtration, reducing the nonexistent ability of water-saturated soils.


Author(s):  
Dustin Crandall ◽  
Goodarz Ahmadi ◽  
Duane H. Smith

The motion of a less viscous, non-wetting gas into a liquid-saturated porous medium is known as drainage. Drainage is an important process in environmental applications, such as enhanced oil recovery and geologic CO2 sequestration. Understanding what conditions will increase the volume of gas that can saturate an initially water-saturated porous medium is of importance for predictions of the total CO2 volume that can be sequestered in known geologic formations. To further the understanding of how drainage flow properties are related to different injection flow-rates, a porous medium consisting of interconnected channels and pores was manufactured to perform bench-top experiments of drainage. Additionally, a finite-volume model of this interconnected channel matrix was constructed. Numerical simulations of constant-rate injection into the model porous medium are first shown to compare favorably to the bench-top experiments. The fluid and injection properties of the drainage process were then varied to evaluate the flow conditions which would maximize the volume of gas trapped within the porous medium. In particular, CO2 displacing brine within the porous medium was modeled, with representative subsurface temperatures and fluid properties. It was shown with these fluid conditions a higher final saturation of the invading less-viscous CO2 was obtained, as compared to air into water experiments at similar injection rates.


1987 ◽  
Vol 62 (12) ◽  
pp. 4682-4687 ◽  
Author(s):  
Jos G. M. van der Grinten ◽  
Marinus E. H. van Dongen ◽  
Hans van der Kogel

2020 ◽  
Author(s):  
Yuri Perepechko ◽  
Konstantin Sorokin ◽  
Georgiy Vasilyev

<p>The aim of the research is to construct a mathematical model of the formation of a fracture system in magma intrusion in the permeable zones of the lithosphere and on this basis to study the formation of magmatic channels in the lithosphere and crust. The lithosphere substrate is modeled by a saturated porous medium in which the processes of small-scale destruction in the mantle magma intrusion lead to the formation of faults and, consequently, to a magmatic channel. Destruction and occurrence of micro-fracture fields can be associated with both magma flow and external seismic effect leading to the rock breaking. The process of small-scale destruction is described within the framework of the dynamics of the elastoplastic fracture-porous medium and causes variations in the rheological properties of the lithosphere substrate. A feature of this process is the destruction substrate in the compression zone represented by a narrow area with a sharply changing concentration of micro-fractures. The micro-fracture accumulation provides the conversion of the broken area into a macro-fissure. The elastoplastic porous matrix in the destruction zone contains both broken and intact substrate, the relative content of which is determined by relaxation of deformations, the speed of which depends on stress and yield stress point according to the power law. The obtained mathematical model provides investigation of currents in fractured-porous media and their effect on the small-scale destruction. Based on the TVD-Runge Kutta method numerical simulation of the compressible fluid infiltration into the fracture-porous permeable channel has shown that stresses in the compression domain can reach stress limits of breaking and result in fracture formation. Change in relaxation time does not result in a marked change in stress fields. The concentration of maximum stresses is observed in the channel center leading to an increase in its fracture porosity. The computational results show the appearance of high stress values in the compression domain in the process of a liquid phase injection, for instance, magma, into a low-permeable fracture-porous layer. The introduction of the destruction criterion will help to associate the occurrence of such regions to the local breaking of the porous matrix. Thus, the proposed micro-fracture generation mechanism can be used to describe the formation of fracture or channels in micro-fracture porous media. Work is done on state assignment of IGM SB RAS with partial support from the Russian Foundation for Basic Research, grants No. 16-29-15131, 19-05-00788.</p>


Sign in / Sign up

Export Citation Format

Share Document