cooling temperature
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 60)

H-INDEX

15
(FIVE YEARS 4)

Author(s):  
A. Babichenko ◽  
Yu. Babichenko ◽  
Ya. Kravchenko ◽  
I. Krasnikov

The features of the hardware and technological design of the AM-1360 series ammonia synthesis units operating in Ukraine are established, the main of which is the use of heat-using ammonia-water absorption and refrigeration units in the secondary condensation complex. The analysis of the functioning of the absorption and refrigeration units has been carried out. A significant dependence of their efficiency on external disturbances, such as temperature and humidity of atmospheric air, has been established. This causes significant fluctuations in the cooling temperature of the circulating gas in the evaporators of absorption-refrigeration units, which significantly affects the efficiency of ammonia production in general. Based on the results of the analysis of the existing information system, implemented on the basis of the TDC-3000 microprocessor complex, recommendations for its improvement were developed, the presence of which makes it possible to abandon daily analyzes and carry out only control ones to check measuring instruments. Algorithmic support has been developed, implemented in the MATLAB package and tested according to the data of industrial operation of absorption and refrigeration units of the ammonia synthesis unit. This allows the operator, in real production conditions, to obtain operational information on the numerical indicators of the efficiency of operation of absorption and refrigeration units, which characterize their operation to the greatest extent (circulation rate, cooling capacity, circulating gas cooling temperature and thermal coefficient) and make a decision on the possibility of reducing the cooling temperature. of circulation gas in evaporators by changing the frequency of circulation of solutions The created algorithmic software in the MATLAB environment allows embedding a client module, the so-called OPC client. The latter provides technology for free programming of access to current data.


2021 ◽  
Vol 15 ◽  
pp. 254-259
Author(s):  
Enrique Torres Tamayo ◽  
José W. Morales ◽  
Mauro D. Albarracín ◽  
Héctor L. Laurencio ◽  
Israel P. Pachacama ◽  
...  

The parameters behavior that characterize the process was carried out through an experimental investigation to obtain the cooling temperature, heat transfer coefficients and the heat flow in mineral coolers. The values of water temperature, water flow and mineral temperature were recorded at the inlet and outlet of the cylindrical cooler. Experiments were carried out with five values of the mass flow, keeping the cylinder revolutions constant. The calculation procedure for the system was obtained, in the mineral coolers the heat transfer by conduction, convection and evaporation predominates as a function of the cooling zone. A reduction in temperature is shown with increasing length, the lowest temperature values were obtained for a mass flow of 8 kg/s. The mineral outlet temperature should not exceed 200 oC, therefore it is recommended to work with the mass flow less than 10 kg/s that guarantees the cooling process.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3072
Author(s):  
Laura Principato ◽  
Daniele Carullo ◽  
Andrea Bassani ◽  
Alice Gruppi ◽  
Guillermo Duserm Garrido ◽  
...  

In this work, extra-virgin olive oil (EVO)- and sunflower oil (SFO)-based oleogels were structured using rice bran wax (RBW) at 10% by weight (w/w). Bamboo fiber milled with 40 (BF40), 90 (BF90) and 150 (BF150) µm of average size was added as a structuring agent. The effect of fiber addition and cooling temperature (0, 4, and 25 °C) on thermal and structural parameters of achieved gels was assessed by rheological (both in rotational and oscillatory mode), texture, and differential scanning calorimetry tests. Oleogelation modified the rheological behavior of EVO and SFO, thus shifting from a Newtonian trend typical of oils to a pseudoplastic non-Newtonian behavior in gels. Moreover, oleogels behaved as solid-like systems with G′ > G″, regardless of the applied condition. All samples exhibit a thermal-reversible behavior, even though the presence of hysteresis suggests a partial reduction in structural properties under stress. Decreasing in cooling temperature negatively contributed to network formation, despite being partially recovered by low-granulometry fiber addition. The latter dramatically improved either textural, rheological, or stability parameters of gels, as compared with only edible oil-based systems. Finally, wax/gel compatibility affected the crystallization enthalpy and final product stability (gel strength) due to different gelator–gelator and gelator–solvent interactions.


2021 ◽  
Vol 206 ◽  
pp. 108342
Author(s):  
Yuying Liang ◽  
Nan Zhang ◽  
Huijun Wu ◽  
Xinhua Xu ◽  
Ke Du ◽  
...  

2021 ◽  
Author(s):  
Lei Zhang ◽  
Xiaofang Ma ◽  
Heng Zhao ◽  
Lei Zheng ◽  
Shouxun Ma

As the gate pier bracket of an arch dam are of complex structure which is characterized by use of high-grade concrete and more cement, higher adiabatic temperature rise, it is rather difficult to control temperature and vulnerable for cracking, and the cracks would absolutely affect the integrity, endurance and safety of pier gate bracket. It is necessary to take reasonable temperature control measures to reduce temperature stress during the construction and prevent cracking. This paper takes the gate pier bracket at the middle-hole dam section to perform simulation analysis of temperature field and stress field under different temperature control measures by 3D FEM. It proves that such measures as densifying water pipes, improving Phase I target cooling temperature appropriately, reducing Phase I cooling temperature falling variation and keeping insulation in low-temperature season can help reduce temperature stress and prevent cracking with good results.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6648
Author(s):  
Young-Min Kim ◽  
Young-Duk Lee ◽  
Kook-Young Ahn

The supercritical carbon dioxide (S-CO2) power cycle is a promising development for waste heat recovery (WHR) due to its high efficiency despite its simplicity and compactness compared with a steam bottoming cycle. A simple recuperated S-CO2 power cycle cannot fully utilize the waste heat due to the trade-off between the heat recovery and thermal efficiency of the cycle. A split cycle in which the working fluid is preheated by the recuperator and the heat source separately can be used to maximize the power output from a given waste heat source. In this study, the operating conditions of split S-CO2 power cycles for waste heat recovery from a gas turbine and an engine were studied to accommodate the temperature variation of the heat sink and the waste heat source. The results show that it is vital to increase the low pressure of the cycle along with a corresponding increase in the cooling temperature to maintain the low-compression work near the critical point. The net power decreases by 6 to 9% for every 5 °C rise in the cooling temperature from 20 to 50 °C due to the decrease in heat recovery and thermal efficiency of the cycle. The effect of the heat-source temperature on the optimal low-pressure side was negligible, and the optimal high pressure of the cycle increased with an increase in the heat-source temperature. As the heat-source temperature increased in steps of 50 °C from 300 to 400 °C, the system efficiency increased by approximately 2% (absolute efficiency), and the net power significantly increased by 30 to 40%.


2021 ◽  
Vol 11 (20) ◽  
pp. 9386
Author(s):  
Qijun Xu ◽  
Jinfeng Wang ◽  
Jing Xie

In view of the extensive application of swirl flow pipes (vortex tubes) in refrigeration systems, the parameters of swirl flow pipes were investigated to provide optimal cooling and heating conditions. Three-dimensional numerical simulations were carried out using available experimental data and models. The analysis verified that the heat pipe with a length of 175 mm performed better than the swirl flow pipe with a length of 125 mm, confirming experiments by Agrawal. Meanwhile, by comparing different pressures, it was found that in the single-nozzle swirl flow pipe, the greater the increase of pressure (0.1–1.0 MPa), the greater the burden on the vortex chamber and the more serious the wear is, which can be seen in the higher inlet pressure. In order to improve the durability of the swirl flow pipe, we suggest using a swirl flow pipe with more nozzles. Finally, according to the simulation results, with the rise of carbon dioxide pressure potential energy at the inlet, the cooling effect of the swirl flow is first increasing and then decreasing. When the swirl flow pipe is used as a refrigeration device to determine the minimum cooling temperature under the maximum pressure, the lowest temperature of the 125 mm swirl flow pipe was 252.4 K at 0.8 MPa, while the lowest temperature of the 175 mm swirl flow pipe was 246.0 K. Secondly, the distance from the inlet to the hot outlet of the swirl flow pipe had little effect on the cooling temperature and radial velocity, but increasing its distance increased the wall temperature of the swirl flow pipe because it increases the contact time between the airflow and the hot end of the tube wall. When the swirl flow pipe is used as a heat-producing device, increasing the tube length of the swirl flow pipe appropriately increases its maximum heat-producing temperature.


2021 ◽  
Vol 13 (5) ◽  
pp. 1-5
Author(s):  
Jinming Wu ◽  
Qiong Gao ◽  
Hanwei Zhang ◽  
Peng Wang ◽  
Xiaolin Wang ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2835
Author(s):  
Piero Franceschi ◽  
Milena Brasca ◽  
Massimo Malacarne ◽  
Paolo Formaggioni ◽  
Michele Faccia ◽  
...  

Parmigiano Reggiano is a hard PDO cheese made from bovine raw milk, whose microbiological characteristics have important repercussions on cheese quality. According to the EU official production protocol, milk temperature at the farm must not drop below 18 °C. The present research aimed to study the effect of cooling milk at the farm at 9 °C on the characteristics of milk and on the cheesemaking process and losses during manufacture. Six cheesemaking trials were performed in two different dairies. In each of them, two cheesemakings were made in parallel: one with milk kept at 9 °C (TM9) and the other with milk kept at 20 °C (TM20). TM9 milk, in comparison with TM20, showed after the creaming process a significant reduction not only of total bacterial count but also of psychrotrophic and lipolytic bacteria. At the same time, TM9 milk showed a higher creaming capacity and, consequently, a lower fat content than TM20. TM9 vat milk had worst coagulation properties than TM20, which caused slightly higher loss of fat and curd fines into the whey. Nevertheless, these changes were too small to influence the efficiency of the cheesemaking process; conversely, maintaining milk at the farm at 9 °C led to a reduction of the number of spoilage bacteria.


Sign in / Sign up

Export Citation Format

Share Document