A method of data compression for the digital correction of the readings of a measuring system

1988 ◽  
Vol 28 (4) ◽  
pp. 13-20
Author(s):  
A.L. Alimov
2011 ◽  
Vol 18 (2) ◽  
pp. 323-334
Author(s):  
Janusz Lewandowski

Inductive Sensor for Weighing of Mass A new method measuring of mass in electronic system of scales has been described. The main element of this system is inductive measuring load cell, which was compared with strain gauge load cell. The aim of the paper is described advantages of the inductive measuring system of mass and explain some main problems of this system. Digital correction of the mechanical errors of the beam like: hysteresis, creep material of the beam under constant load, influence of ambient temperature was described.


Author(s):  
Bukalin, Alexey ◽  
◽  
Zagrebaev Andrey

This paper describes a computer program that implements an algorithm for com- pressing technological information with losses using archive data of the information-measuring system "Skala-micro" of the Kursk and Smolensk NPPs as an example. The presented al- gorithm allows to compress file archives at the data level with the possibility of their quick subsequent recovery within the limits of the acceptable error. The main goal of the algorithm is to significantly reduce the excess amount of memory when storing data for its subsequent more efficient use.


2021 ◽  
Vol 75 (3) ◽  
pp. 100-107
Author(s):  
B.-B.S. Yesmagambetov ◽  

When processing huge data streams in information systems, individual measurements or whole groups of measurements can be distorted or lost due to various reasons. Recovery of compressed data during transmission on communication channels is accompanied by errors related to distortion of information and service parts of messages due to presence of interference in transmission channel. To these errors are added errors caused by quantization of the transmitted implementations by level and time sampling. Research on methods of increasing noise immunity both during transmission and during recovery of measured data is an urgent task in the design of information and measurement systems. The article considers non-parametric methods of estimating probabilistic characteristics of random processes. A distinctive feature of non-parametric methods is the ranking of data measured at the observation interval. It is shown that ranking of data on transmitting side of information-measuring system enables correction of errors and failures based on strict monotony of ranked number of codes. Also, the error of recovery of continuous implementations taking into account distortions of compressed data in the communication channel was investigated. The obtained results indicate that the use of complex compression algorithms is impractical, since the difference in the error in the restoration of non-stationary messages between the simplest algorithm and the rather difficult one becomes negligible. The article presents the results of estimating recovery errors for various data compression methods.


2020 ◽  
pp. 38-44
Author(s):  
A. V. Polyakov ◽  
M. A. Ksenofontov

Optical technologies for measuring electrical quantities attract great attention due to their unique properties and significant advantages over other technologies used in high-voltage electric power industry: the use of optical fibers ensures high stability of measuring equipment to electromagnetic interference and galvanic isolation of high-voltage sensors; external electromagnetic fields do not influence the data transmitted from optical sensors via fiber-optic communication lines; problems associated with ground loops are eliminated, there are no side electromagnetic radiation and crosstalk between the channels. The structure and operation principle of a quasi-distributed fiber-optic high-voltage monitoring system is presented. The sensitive element is a combination of a piezo-ceramic tube with an optical fiber wound around it. The device uses reverse transverse piezoelectric effect. The measurement principle is based on recording the change in the recirculation frequency under the applied voltage influence. When the measuring sections are arranged in ascending order of the measured effective voltages relative to the receiving-transmitting unit, a relative resolution of 0,3–0,45 % is achieved for the PZT-5H and 0,8–1,2 % for the PZT-4 in the voltage range 20–150 kV.


2020 ◽  
Vol 29 (8) ◽  
pp. 57-61
Author(s):  
V.Y. Chernykh ◽  
◽  
E.V. Karpushina ◽  
N. Yu. Bykova ◽  
A.S. Maksimov ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document