acceptable error
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 108)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol 27 (3) ◽  
pp. 1-26
Author(s):  
Skandha Deepsita S ◽  
Dhayala Kumar M ◽  
Noor Mahammad SK

The approximate hardware design can save huge energy at the cost of errors incurred in the design. This article proposes the approximate algorithm for low-power compressors, utilized to build approximate multiplier with low energy and acceptable error profiles. This article presents two design approaches (DA1 and DA2) for higher bit size approximate multipliers. The proposed multiplier of DA1 have no propagation of carry signal from LSB to MSB, resulted in a very high-speed design. The increment in delay, power, and energy are not exponential with increment of multiplier size ( n ) for DA1 multiplier. It can be observed that the maximum combinations lie in the threshold Error Distance of 5% of the maximum value possible for any particular multiplier of size n . The proposed 4-bit DA1 multiplier consumes only 1.3 fJ of energy, which is 87.9%, 78%, 94%, 67.5%, and 58.9% less when compared to M1, M2, LxA, MxA, accurate designs respectively. The DA2 approach is recursive method, i.e., n -bit multiplier built with n/2-bit sub-multipliers. The proposed 8-bit multiplication has 92% energy savings with Mean Relative Error Distance (MRED) of 0.3 for the DA1 approach and at least 11% to 40% of energy savings with MRED of 0.08 for the DA2 approach. The proposed multipliers are employed in the image processing algorithm of DCT, and the quality is evaluated. The standard PSNR metric is 55 dB for less approximation and 35 dB for maximum approximation.


2022 ◽  
Vol 52 (1) ◽  
pp. 55-60
Author(s):  
Serap Akdemir

Spatial variation of temperature and relative humidity were estimated with Computational Fluid Dynamics (CFD) at top, middle and base levels for peach storage at +1oC and 90% relative humidity and verified with measured data in a cold store with evaporative cooling system. Storage temperature was +1oC and relative humidity 90% for peach storage. Ansys Fluent Software was used for CFD modelling. CFD models were validated with sensors measurements. Results were evaluated by using descriptive statistics, relative error and variance analyses. Mean difference between the model and measurements was calculated as 0.51oC for ambient temperature and as 3.47 % for relative humidity. Relative error of the CFD model was calculated as 9.77 for the ambient temperature and 1.29 for relative humidity for peach storage. The developed CFD models estimated the ambient factors with an acceptable error in the evaporative cold store for peach storage.


Author(s):  
OSMAN Oğuz ◽  
Huriye Serin ◽  
Fatma Hocaoğlu Emre

Background: Alkaline phosphatase (ALP) enzymes are widely used as signal amplifiers in immunoenzymatic methods. Conditions that cause ALP elevations, such as bone or liver diseases can cause interference in immunoenzymatic methods. Objective: We aimed to examine ALP's effect on immunoenzymatic assay by adding isolated pure ALP to the prepared serum pool. Material and Methods: We prepared a serum pool and divided into 4 groups. By adding isolated pure ALP at different concentrations to each group, we obtained sample groups containing ALP enzyme at concentrations of 85 U/L, 340 U/L, 870 U/L and 1570 U/L. In each group, 20-repetition of βhCG, Ferritin, FT4, TSH, Troponin I and Vit B12 tests were performed. Coefficient of variation, bias, and total error were calculated. All groups were compared by using Friedman test for paired samples. Result: After ALP addition, the calculated total error values of FT4, βhCG and troponin I tests were found to be above the acceptable error limits. There were statistically significant differences in βhCG ,FT4, troponin I and Vit B12 tests when compared to the baseline ALP level (P<0,0125).Conclusion: Isolated ALP elevations can be a source of interference for immunoenzymatic methods.KeywordsAlkaline phosphatase, ALP, bias, immunoenzymatic, total error


2021 ◽  
pp. 1-25
Author(s):  
Vishal G Salunkhe ◽  
Ramchandra Ganapati Desavale ◽  
Surajkumar G Kumbhar

Abstract Condition monitoring of rotor dynamic is recognized as an advanced preventative maintenance technique for fault-free operation. Faulty bearings in rotating machines may cause severe problems and even untimely breakdowns. This work demonstrates the power of the finite element analysis (FEA) model and dimension analysis technique (DAT) to analyze the effect of the depth and slope angle of surface faults on the bearing contact characteristic. Experimentation is performed to investigate the vibration characteristics of ball bearings. The FEA, DAT, and experimentation show that vibration amplitude is a vital function of surface fault size. The current approach of FEA with DAT reflects their reliability and accuracy for the diagnosis of rotor systems. The present method was found effective in predicting vibration amplitude and defect frequency within acceptable error.


2021 ◽  
Author(s):  
Sujet Phodapol ◽  
Tachadol Suthisomboon ◽  
Pong Kosanunt ◽  
Ravipas Vongasemjit ◽  
Petch Janbanjong ◽  
...  

Abstract Passive and active hybrid pipeline inspection gauges (PIGs) have been used for in-pipe inspection. While a passive PIG cannot control its speed, the hybrid version can achieve this by using an integrated valve specifically designed and embedded in the PIG. This study proposes a generic new method for speed adaptation in PIGs (called MC-PIG) by introducing a generic, modular, controllable, external valve unit add-on for attaching to existing conventional (passive) PIGs with minimal change. The MC-PIG method is based on the principle of morphological computation with closed-loop control. It is achieved by regulating/computing the PIG's morphology (i.e., a modular rotary valve unit add-on) to control bypass flow. Adjustment of the valve angle can affect the flow rate passing through the PIG, resulting in speed regulation ability. We use numerical simulation with computational fluid dynamics (CFD) to investigate and analyze the speed of a simulated PIG with the valve unit adjusted by proportional-integral (PI) control under various in-pipe pressure conditions. Our simulation experiments are performed under different operating conditions in three pipe sizes (16″, 18″, and 22″ in diameter) to manifest the speed adaptation of the PIG with the modular valve unit add-on and PI control. Our results show that the PIG can effectively perform real-time adaptation (i.e., adjusting its valve angle) to maintain the desired speed. The valve design can be adjusted from 5 degrees (closed valve, resulting in high moving speed) to a maximum of 45 degrees (fully open valve, resulting in low moving speed). The speed of the PIG can be regulated from 0.59 m/s to 3.88 m/s in a 16″ pipe at 4.38 m/s (in-pipe fluid velocity), 2500 kPa (operating pressure), and 62 °C (operating temperature). Finally, the MC-PIG method is validated using a 3D-printed prototype in a 6″ pipe. Through the investigation, we observed that two factors influence speed adaptation; the pressure drop coefficient and friction of the PIG and pipeline. In conclusion, the results from the simulation and prototype show close characteristics with an acceptable error.


2021 ◽  
Vol 9 (12) ◽  
pp. 1382
Author(s):  
Mohsin Murad ◽  
Imran A. Tasadduq ◽  
Pablo Otero

Multicarrier techniques have made it possible to wirelessly transmit data at higher rates for underwater acoustic (UWA) communication. Several multicarrier techniques have been explored in the past for wireless data transmission. OFDM is known to fight off inter-symbol interference due to the orthogonality of its subcarriers. However, due to time variations, OFDM suffers from intercarrier interference. As the UWA channel is both a time and frequency variant, channel estimation becomes complex. We propose a pilot-based channel estimation technique and explore two equalizers for improving the error performance of an OFDM-based UWA system. Both the equalizers employ pilot subcarriers to estimate the UWA channel. One equalizer is a least squares (LS) equalizer and the other is a zero forcing (ZF) equalizer. Using computer simulations, it is observed that, for an acceptable error performance, the number of pilots should be one-fourth the number of subcarriers. Moreover, if the energy of the pilots is increased without changing the overall symbol energy, the error performance degrades. It is also noted that both the LS and ZF equalizers give an acceptable error performance with the ZF performing marginally better than the LS. Furthermore, the error performance of the proposed system is evaluated as a function of the transmitter-receiver distance and an acceptable error performance is observed even at 1250 m.


2021 ◽  
Vol 21 (3) ◽  
pp. 254-261 ◽  
Author(s):  
RAJKUMAR DHAKAR ◽  
VINAY KUMAR SEHGAL ◽  
DEBASISH CHAKRABORTY ◽  
JOYDEEP MUKHERJEE ◽  
S. NARESH KUMAR

Evaluation of crop simulation model for growth and development of crops at farmers' eld is uncommon, as large variability exists in management practices at farmers' elds. Present study was attempted to evaluate the suitability of InfoCrop v2.1 model for prediction of growth, development and yield of wheat crop at farmers' elds using two years data i.e. 2015-16 & 2016-17. A total of 42 farmers'elds were selected in Pataudi block of Haryana state. The large variability in wheat sowing date (1-Nov to 25-Dec), seed rate (87 to 150 kgha-1), N application rate (70 to 195 kgha-1) and number of irrigations (5-8) were observed in farmers' eld. InfoCrop model could able to predict well days to anthesis and physiological maturity within an acceptable error of 5% (RMSE~3 days). Measured leaf area index (LAI) matched well with simulated LAI (RMSE ~ 0.5). The agreement between observed and model simulated wheat grain yield was found to be satisfactory (nRMSE ~ 6-8%). We conclude that InfoCrop-wheat model satisfactorily simulate the growth, development and yield of wheat crop under varied management practices at farmers' elds, and hence can be applied for agricultural applications for farmers 


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Michael Starke ◽  
Chris Geiger

When investigating the forwarding process within the timber supply chain, insufficient data often inhibits long-term studies or make real-time optimisation of the logistics process difficult. Information sources to compensate for this lack of data either depend on other processing steps or they need additional, costly hardware, such as conventional crane scales. An innovative weight-detection concept using information provided by a commonly available hydraulic pressure sensor may make the introduction of a low-cost weight information system possible. In this system, load weight is estimated by an artificial neural network (ANN) based on machine data such as the hydraulic pressure of the inner boom cylinder and the grapple position.In our study, this type of crane scale was set up and tested under real working conditions, implemented as a cloud application. The weight scale ANN algorithm was therefore modified for robustness and executed on data collected with a commonly available telematics module. To evaluate the system, also with regard to larger sample sizes, both direct weight-reference measurements and additional volume-reference measurements were made. For the second, locally valid weight-volume conversion factors for mainly Norway spruce (Picea abies, 906 kg m-3, standard error of means (SEM) of 13.6 kg m-3), including mean density change over the observation time (–0.16% per day), were determined and used as supportive weight-to-volume conversion factor.Although the accuracy of the weight scale was lower than in previous laboratory tests, the system showed acceptable error behaviour for different observation purposes. The twice-observed SEM of 1.5% for the single loading movements (n=95, root-mean-square error (RMSE) of 15.3% for direct weight reference; n=440, RMSE=33.2% for volume reference) enables long-term observations considering the average value, but the high RMSE reveals problems with regard to the single value information.The full forwarder load accuracy, as unit of interest, was observed with an RMSE of 10.6% (n=41), considering a calculated weight-volume conversion as reference value. An SEM of 5.1% for already five observations with direct weight reference provides a good starting point for work-progress observation support.


2021 ◽  
Author(s):  
Ki Young Lee ◽  
Jung-Hee Lee ◽  
Sang-Kyu Im ◽  
Won Young Lee

Abstract Background: Pelvic incidence (PI) is used as a key parameter in surgical correction of adult spinal deformity (ASD) patients. However, there is a limitation to reflecting the exact center or inclination of 3-dimentional anatomical structures in a 2-dimensional (2D) sagittal radiographs, and these can lead to the measurement errors. Therefore, we evaluated whether there is a change in PI measurement according to the actual rotation of the pelvis, and conducted a study on a more accurate method of measuring PI in a 2D sagittal radiograph.Methods: From 2014 to 2015, 30 patients who visited our outpatient clinic were analyzed retrospectively. CT scan images including the lower lumbar spine, pelvis, and both femurs in DICOM format were imported to Mimics Research 17.0 (Materialise NV, Belgium), Solidworks (Dassault systems, France), and AutoCAD 2014 (AUTODESK, US), and the changes in PI according to vertical and horizontal pelvic rotations were evaluated.Results: The average PI according to the horizontal pelvic rotations measured on AutoCAD with 0º, 5º, 10º, 15º, 20º, 25º, 30º, 35º, and 40º was 48.8º, 48.7º, 48.3º, 47.8º, 46.9º, 45.6º, 44.0º, 42.2º, and 39.9º, respectively. The PI of an acceptable error of 6º on radiographs was 35º in the horizontal pelvic rotation. The average PI according to the vertical pelvic rotations measured on AutoCAD with 0º, 5º, 10º, 15º, 20º, 25º, 30º, 35º, and 40º was 48.8º, 49.0º, 49.5º, 50.2º, 51.3º, 52.7º, 54.4º, 56.6º, and 59.4º, respectively. The PI of an acceptable error of 6º on radiographs was 30º in the vertical pelvic rotation. Conclusions: This study revealed that the PI value could differ from the actual anatomical value due to the horizontal and vertical rotation of the pelvis while acquiring the radiograph. In whole-spine lateral radiographs, errors in PI measurement may occur due to rotation of the pelvis or nonvertical projection of X-rays. In the standing pelvic lateral radiographs, placing the overlapping femoral heads at the center and obtaining the straight sacral endplate as much as possible by referring to CT or magnetic resonance imaging would be a more accurate measurement method to define the PI.


2021 ◽  
Author(s):  
Damian Burzyński

The paper deals with the subject of the prediction of useful energy during the cycling of a lithium-ion cell (LIC), using machine learning-based techniques. It was demonstrated that depending on the combination of cycling parameters, the useful energy (<i>RUE<sub>c</sub></i>) that can be transfered during a full cycle is variable, and also three different types of evolution of changes in <i>RUE<sub>c</sub></i> were identified. The paper presents a new non-parametric <i>RUE<sub>c</sub></i> prediction model based on Gaussian process regression. It was proven that the proposed methodology enables the <i>RUE<sub>c</sub></i> prediction for LICs discharged, above the depth of discharge, at a level of 70% with an acceptable error, which is confirmed for new load profiles. Furthermore, techniques associated with explainable artificial intelligence were applied, for the first time, to determine the significance of model input parameters – the variable importance method – and to determine the quantitative effect of individual model parameters (their reciprocal interaction) on <i>RUE<sub>c</sub></i> – the accumulated local effects model of the first and second order. Not only is the <i>RUE<sub>c</sub></i> prediction methodology presented in the paper characterised by high prediction accuracy when using small learning datasets, but it also shows high application potential in all kinds of battery management systems.


Sign in / Sign up

Export Citation Format

Share Document