Generalized Brewster angle for wave reflection from a fluid-transversely isotropic solid interface

Ultrasonics ◽  
1996 ◽  
Vol 34 (2-5) ◽  
pp. 487-489 ◽  
Author(s):  
D.A. Sotiropoulos ◽  
R.W. Ogden
Geophysics ◽  
1992 ◽  
Vol 57 (11) ◽  
pp. 1512-1519 ◽  
Author(s):  
Mark Graebner

Numerous investigators have studied the P-SV reflection and transmission coefficients of an isotropic solid (Zoeppritz, 1919; Nafe, 1957; Frasier, 1970; Young and Braile, 1976; Kind, 1976; Aki and Richards, 1980).


Geophysics ◽  
1990 ◽  
Vol 55 (7) ◽  
pp. 851-855 ◽  
Author(s):  
Franklyn K. Levin

CMP stacking velocities for a P‐wave reflection from a dipping plane underlying a transversely isotropic solid are, after correction by the cosine of the dip angle, nearly independent of the dip angle if the symmetry axis of the solid is perpendicular to the reflector. If the symmetry axis is perpendicular to the surface, stacking velocities vary, after correction with the cosine of the dip angle, and predicting the amount and dependence on dip angle requires numerical investigation for each solid, since the stacking velocities may increase, decrease, or go through an extremum as the dip increases. The exact behavior depends on the elastic constants of the solid.


Geophysics ◽  
1993 ◽  
Vol 58 (7) ◽  
pp. 964-977 ◽  
Author(s):  
Chaur‐Jian Hsu ◽  
Michael Schoenberg

Ultrasonic velocities were measured on a block composed of lucite plates with roughened surfaces pressed together with a static normal stress to simulate a fractured medium. The measurements, normal, parallel, and oblique to the fractures, show that for wavelengths much larger than the thickness of an individual plate, the block can be modeled as a particular type of transversely isotropic (TI) medium that depends on four parameters. This TI medium behavior is the same as that of an isotropic solid in which are embedded a set of parallel linear slip interfaces, specified by (1) the excess compliance tangential to the interfaces and (2) the excess compliance normal to the interfaces. At all static stress levels, we inverted the data for the background isotropic medium parameters and the excess compliances. The background parameters obtained were basically independent of stress level and agreed well with the bulk properties of the lucite. The excess compliances decreased with increasing static closing stress, implying that increasing static stress forces asperities on either side of a fracture into greater contact, gradually eliminating the excess compliance that gives rise to the anisotropy. A medium with such planes of excess compliance has been shown, theoretically, to describe the behavior of a medium with long parallel joints, as well as a medium with embedded parallel microcracks.


Geophysics ◽  
1978 ◽  
Vol 43 (3) ◽  
pp. 528-537 ◽  
Author(s):  
Franklyn K. Levin

Assuming media having a velocity dependence on angle which is an ellipse, we have confirmed previously reported time‐distance relations for reflections from single interfaces, for reflections from sections of beds separated by horizontal interfaces, for refraction arrivals, and added the expression for diffractions. We also have derived expressions for plane‐wave reflection and transmission coefficients at an interface separating two transversely isotropic media. None of the properties differs greatly from those for isotropic media. However, velocities found from seismic surface reflections or refractions are horizontal components. There seems to be no way of obtaining vertical components of velocity from surface measurements alone and hence no way to compute depths from surface data.


Geophysics ◽  
2006 ◽  
Vol 71 (1) ◽  
pp. D1-D13 ◽  
Author(s):  
Vladimir Grechka ◽  
Andrés Pech

Deviations of P-wave reflection traveltimes from a hyperbola, called the nonhyperbolic or quartic moveout, need to be handled properly while processing long-spread seismic data. As observed nonhyperbolic moveout is usually attributed to the presence of anisotropy, we devote our paper to deriving and analyzing a general formula that describes an azimuthally varying quartic moveout coefficient in a homogeneous, weakly anisotropic medium above a dipping, mildly curved reflector. To obtain the desired expression, we consistently linearize all quantities in small stiffness perturbations from a given isotropic solid. Our result incorporates all known weak-anisotropy approximations of the quartic moveout coefficient and extends them further to triclinic media. By comparing our approximation with nonhyperbolic moveout obtained from the ray-traced reflection traveltimes, we find that the former predicts azimuthal variations of the quartic moveout when its magnitude is less than 20% of the corresponding hyperbolic moveout term. We also study the influence of reflector curvature on nonhyperbolic moveout. It turns out that the curvature produces no quartic moveout in the reflector strike direction, where the anisotropy-induced moveout nonhyperbolicity is usually nonnegligible. Thus, the presence of nonhyperbolic moveout along the reflector strike might indicate effective anisotropy.


Sign in / Sign up

Export Citation Format

Share Document