effective anisotropy
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 129 (21) ◽  
pp. 215106
Author(s):  
Vincent Laude ◽  
Julio Andrés Iglesias Martínez ◽  
Yan-Feng Wang ◽  
Muamer Kadic

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1380
Author(s):  
Raja Das ◽  
Javier Alonso Masa ◽  
Vijaysankar Kalappattil ◽  
Zohreh Nemati ◽  
Irati Rodrigo ◽  
...  

Magnetic interactions can play an important role in the heating efficiency of magnetic nanoparticles. Although most of the time interparticle magnetic interactions are a dominant source, in specific cases such as multigranular nanostructures intraparticle interactions are also relevant and their effect is significant. In this work, we have prepared two different multigranular magnetic nanostructures of iron oxide, nanorings (NRs) and nanotubes (NTs), with a similar thickness but different lengths (55 nm for NRs and 470 nm for NTs). In this way, we find that the NTs present stronger intraparticle interactions than the NRs. Magnetometry and transverse susceptibility measurements show that the NTs possess a higher effective anisotropy and saturation magnetization. Despite this, the AC hysteresis loops obtained for the NRs (0–400 Oe, 300 kHz) are more squared, therefore giving rise to a higher heating efficiency (maximum specific absorption rate, SARmax = 110 W/g for the NRs and 80 W/g for the NTs at 400 Oe and 300 kHz). These results indicate that the weaker intraparticle interactions in the case of the NRs are in favor of magnetic hyperthermia in comparison with the NTs.


2021 ◽  
Vol 139 (5) ◽  
pp. 568-570
Author(s):  
S. Walters ◽  
M.M.A.B. Abdullah ◽  
A.V. Sandu ◽  
S. Garus ◽  
M.A.A. Mohd Saleh ◽  
...  

2021 ◽  
Author(s):  
John Keith Magali ◽  
Thomas Bodin ◽  
Navid Hedjazian ◽  
Yanick Ricard ◽  
Yann Capdeville

<p>Large-scale seismic anisotropy inferred from seismic observations has been loosely interpreted either in terms of intrinsic anisotropy due to Crystallographic Preferred Orientation (CPO) development of mantle minerals or extrinsic anisotropy due to rock-scale Shape Preferred Orientation (SPO). The coexistence of both contributions misconstrues the origins of seismic anisotropy observed in seismic tomography models. It is thus essential to discriminate CPO from SPO in the effective anisotropy of an upscaled/homogenized medium, that is, the best possible elastic model recovered using finite-frequency seismic data assuming perfect data coverage. In this work, we investigate the effects of upscaling an intrinsically-anisotropic and highly-heterogeneous Earth's mantle. The problem is applied to a 2-D marble cake model of the mantle with a binary composition in the presence of CPO obtained from a micro-mechanical model. We compute the long-wavelength effective equivalent of this mantle model using the 3D non-periodic elastic homogenization technique. Our numerical findings predict that overall, upscaling purely intrinsically anisotropic medium amounts to the convection-scale averaging of CPO. As a result, it always underestimates the anisotropy, and may only be overestimated due to the additive extrinsic anisotropy from SPO. Finally, we show analytically (in 1D) and numerically (in 2D) that the full effective radial anisotropy ξ<sup>*</sup> is approximately just the product of the effective intrinsic radial anisotropy ξ<sup>*</sup><sub>CPO</sub> and the extrinsic radial anisotropy ξ<sub>SPO</sub>:</p><p>ξ<sup>* </sup>= ξ<sup>*</sup><sub>CPO </sub>× ξ<sub>SPO</sub></p><p>Based on the above relation, it is imperative to homogenize a texture evolution model first before drawing interpretations from existing anisotropic tomography models. Such a scaling law can therefore be used as a constraint to better estimate the separate contributions of CPO and SPO from the effective anisotropy observed in tomographic models.</p>


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2906
Author(s):  
Amadeusz Łaszcz ◽  
Mariusz Hasiak ◽  
Jerzy Kaleta

The temperature dependence of magnetocrystalline anisotropy was investigated in detail for the polycrystalline Ni50Mn25Ga25, Ni50Mn25Ga20Ti5 and Ni50Mn25Ga20Gd5 ferromagnetic shape memory alloys in the temperature range of 50–400 K. The effective anisotropy constant was estimated from a series of high field magnetization curves based on the fitting procedure according to the law of approach to magnetic saturation. The low temperature martensitic phase was found to have a significantly higher anisotropy energy in comparison to a high temperature austenitic phase, which was observed through a sudden, distinct drop of anisotropy energy. The calculated values of the effective anisotropy constant were comparable to the results published by other authors. Moreover, the strong influence of chemical composition on the first-order phase transition and the second-order ferromagnetic to the paramagnetic transition was revealed. Finally, the strong coupling between the temperature dependence of the coercive field and the temperature dependence of magnetocrystalline anisotropy was also shown and discussed in the present study.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 846
Author(s):  
Katarzyna Błoch ◽  
Marcin Nabiałek ◽  
Przemysław Postawa ◽  
Andrei Victor Sandu ◽  
Agata Śliwa ◽  
...  

Amorphous Fe- and Co-based alloys possess so-called soft magnetic properties. Due to the high sensitivity of the magnetisation vector to any inhomogeneities occurring in these alloys, it is possible to assess indirectly structural defects. This paper presents the results of research on the structure and magnetic properties of bulk amorphous alloys with a high content of Fe and Co. The magnetic properties of the produced alloys were tested using a Faraday magnetic balance and a vibrating sample magnetometer (VSM). Analysis of the magnetisation process in the region known as the approach to ferromagnetic saturation was carried out in accordance with Kronmüller’s theorem. Magnetisation in magnetic fields of greater than the effective anisotropy field (Holstein-Primakoff para-process) was also studied. For the studied alloys, it was found that an increase in Fe content causesan increase in saturation magnetisation, and decreases in the values of the coercive field and thespin-wave stiffness parameter, Dspf. A relationship was observed between the width of the amorphous halo and the value of the coercive field. However, no significant links were found between either the presence of structural defects and the properties of these materials, or between the Co content and the value of the coercive field.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4296 ◽  
Author(s):  
Ariane Sagasti ◽  
Jon Gutiérrez ◽  
Andoni Lasheras ◽  
José Manuel Barandiarán

We present an exhaustive study of the magnetoelastic properties of 24 strips with different rectangular dimensions, cut from a long ribbon of Metglas® 2826MB3. The strips have a length-to-width ratio R = L/w ranging from 2 to over 20. Significant variations of the apparent saturation Young’s modulus and the ΔE effect with strip geometry, changing from 160 GPa and 4% for L = 10 mm, w = 5 mm and R = 2, to 164 GPa and 9.6% for L = 35 mm, w = 1.7 mm and R = 20.6, have been observed. In order to obtain the highest values of the ΔE effect, the magnetomechanical coupling coefficient, k, and the quality factor of the resonance, Q, a value R > 14 is needed. The effective anisotropy field Hk*, taken as the minimum of the E(H) curve, and its width ΔH, are not as strongly influenced by the R value, and a value of R > 7 is enough to reach the lowest value. From our measurements we infer that the formerly predicted value of R > 5 needed for a good magnetic and magnetoelastic response of the material must be actually regarded as the lowest limit for this parameter. In fact, we show that the demagnetizing factor N, rather than the length-to-width ratio R, is the parameter that governs the magnetoelastic performance of these strips.


2019 ◽  
Vol 125 (10) ◽  
pp. 103903 ◽  
Author(s):  
N. Maniotis ◽  
A. Nazlidis ◽  
E. Myrovali ◽  
A. Makridis ◽  
M. Angelakeris ◽  
...  

Crystals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Takeshi Kato ◽  
Daiki Oshima ◽  
Satoshi Iwata

Kr+ ion dose dependence of the magnetic properties of MnGa films and the fabrication of planar-patterned MnGa films by the local ion irradiation technique were reviewed. The magnetization and perpendicular anisotropy of the MnGa vanished at an ion dose of 1 × 1014 ions/cm2 due to the phase change of the MnGa from ferromagnetic L10 to paramagnetic A1 phase. The average switching field Hsw of the planar-patterned MnGa increased with decreasing the bit size, implying low bit edge damage in the patterned MnGa, whereas a rather large switching field distribution (SFD) of 25% was confirmed for a bit size of ~40 nm. Time resolved magneto-optical Kerr effect measurements revealed that as-prepared MnGa exhibits an effective anisotropy field Hkeff = 20 kOe, its distribution ΔHkeff = 200 Oe, and Gilbert damping α = 0.008. The ion-irradiated MnGa films exhibited larger Hkeff = 22–23 kOe than that of the MnGa before the ion dose. Thus, ion irradiation does not decrease the perpendicular anisotropy, which suggests a small bit edge in the patterned MnGa. ΔHkeff increased from 0.2 kOe to 3 kOe, whereas the length of disorder in the film ξ decreased from 10 nm to 3 nm by ion irradiation.


Sign in / Sign up

Export Citation Format

Share Document