In vitro translation of virion RNA from Moloney murine sarcoma virus

Virology ◽  
1980 ◽  
Vol 101 (1) ◽  
pp. 91-103 ◽  
Author(s):  
Jackie Papkoff ◽  
Tony Hunter ◽  
Karen Beemon
1991 ◽  
Vol 63 (5) ◽  
pp. 736-742 ◽  
Author(s):  
P Nanni ◽  
G Azzarello ◽  
L Tessarollo ◽  
C De Giovanni ◽  
P-L Lollini ◽  
...  

1999 ◽  
Vol 73 (9) ◽  
pp. 7255-7261 ◽  
Author(s):  
Hinh Ly ◽  
Donald P. Nierlich ◽  
John C. Olsen ◽  
Andrew H. Kaplan

ABSTRACT Retroviruses contain two plus-strand genomic RNAs, which are stably but noncovalently joined in their 5′ regions by a dimer linkage structure (DLS). Two models have been put forward to explain the mechanisms by which the RNAs dimerize; each model emphasizes the role of specific molecular determinants. The kissing-loop model implicates interactions between palindromic sequences in the DLS region. The second model proposes that purine-rich stretches in the region form purine quartet structures. Here, we present an examination of the in vitro dimerization of Moloney murine sarcoma virus (MuSV) RNA in the context of these two models. Dimers were found to form spontaneously in a temperature-, time-, concentration-, and salt-dependent manner. In contrast to earlier reports, we found that deletion of neither the palindrome nor the consensus purine motifs (PuGGAPuA) affected the level of dimer formation at low concentrations of RNA. Rather, different purine-rich sequences, i.e., consecutive stretches of guanines, were found to enhance both in vitro RNA dimerization and in vivo viral replication. Biochemical evidence further suggests that these guanine-rich (G-rich) stretches form guanine quartet structures. We also found that the palindromic sequences could support dimerization at significantly higher RNA concentrations. In addition, the G-rich stretches were as important as the palindromic sequence for maintaining efficient viral replication. Overall, our data support a model that entails contributions from both of the previously proposed mechanisms of retroviral RNA dimerization.


1985 ◽  
Vol 5 (8) ◽  
pp. 1959-1968 ◽  
Author(s):  
B J Graves ◽  
S P Eisenberg ◽  
D M Coen ◽  
S L McKnight

The Moloney murine sarcoma virus long terminal repeat (LTR) harbors two distinct positive activators of transcription, namely, a distal signal and an enhancer. In this report we demonstrate that infection by herpes simplex virus (HSV) can markedly affect the utilization of these two Moloney murine sarcoma virus transcription signals. We investigated the HSV-mediated trans-acting effects with two goals in mind: first, to gain insight into LTR function, and second, to probe the mechanisms used by HSV to establish its own transcription cascade. In mock-infected cells, LTR-mediated expression was heavily dependent on the Moloney murine sarcoma virus enhancer but was effectively distal signal independent. HSV infection mobilized the use of the LTR distal signal and concomitantly alleviated enhancer dependence. Indeed, enhancer function may actually be inhibited by HSV trans-acting factors. These results suggest that the two positive control signals of the Moloney murine sarcoma virus LTR facilitate transcriptional activation by two different pathways. We further observed that the identity of the structural gene driven by the LRT, as well as the state of integration of a transfected template, can exert a substantial effect on the response of a template to HSV infection. According to these findings, we propose a tentative model to account for the initial temporal shift of the HSV transcriptional cascade.


Sign in / Sign up

Export Citation Format

Share Document