Genome sequence of tick-borne encephalitis virus (Western subtype) and comparative analysis of nonstructural proteins with other flaviviruses

Virology ◽  
1989 ◽  
Vol 173 (1) ◽  
pp. 291-301 ◽  
Author(s):  
Christian W. Mandl ◽  
Franz X. Heinz ◽  
Elisabeth Stöckl ◽  
Christian Kunz
2016 ◽  
Vol 4 (5) ◽  
Author(s):  
G. Dobler ◽  
M. Bestehorn ◽  
M. Antwerpen ◽  
A. Överby-Wernstedt

We report here the complete genome sequence (GenBank accession no. KX268728) of tick-borne encephalitis strain HB171/11, isolated from an Ixodes ricinus tick from a natural focus where human neurological disease is rare. The strain shows unique characteristics in neuroinvasiveness and neurovirulence.


2019 ◽  
Vol 3 (6) ◽  
pp. 36-47
Author(s):  
U. V. Potapova ◽  
S. I. Feranchuk ◽  
S. I. Belikov ◽  
G. N. Leonova

Non-structural protein 5 (NS5) of tick-borne encephalitis virus is an enzyme which is responsible for a copying of viral RNA, and it has a strong structural similarity to RNA polymerases of another RNA virus families. The strains of the virus are separated into three subtypes, which differ by specific mutations in virus proteins, including NS5 protein. The methods of structural bioinformatics allow to construct a model of NS5 protein for several strains of the virus.The paper presents the comparative analysis of sequences and structures of NS5 protein, for three subtypes of the tick-borne encephalitis virus. The segments of protein were identified where the highest difference between subtypes and within subtypes is observed. These segments, where most of the mutations are accumulated, are located in methyltransferase domain, in the inter-domain interface, and in the three subdomains of polymerase domain. The association between the locations of mutations in NS5 protein and the flexibility of a protein backbone was observed using normal mode analysis. Namely, the most important mutations are located in the parts of protein where the amplitude of synchronous oscillations estimated using normal mode analysis is the highest: in the second zinc binding pocket within polymerase domain, in the N-terminal extension within inter-domain interface, and around an active site of methyltransferase domain.


2003 ◽  
Vol 77 (1) ◽  
pp. 25-36 ◽  
Author(s):  
T. S. Gritsun ◽  
T. V. Frolova ◽  
A. I. Zhankov ◽  
M. Armesto ◽  
S. L. Turner ◽  
...  

ABSTRACT A strain of Tick-borne encephalitis virus designated Zausaev (Za) was isolated in Siberia from a patient who died of a progressive (2-year) form of tick-borne encephalitis 10 years after being bitten by a tick. The complete genomic sequence of this virus was determined, and an attempt was made to correlate the sequence with the biological characteristics of the virus. Phylogenetic analysis demonstrated that this virus belongs to the Siberian subtype of Tick-borne encephalitis virus. Comparison of Za virus with two related viruses, a Far Eastern isolate, Sofjin, and a Siberian isolate, Vasilchenko, revealed differences among the three viruses in pathogenicity for Syrian hamsters, cytopathogenicity for PS cells, plaque morphology, and the electrophoretic profiles of virus-specific nonstructural proteins. Comparative amino acid alignments revealed 10 individual amino acid substitutions in the Za virus polyprotein sequence that were different from those of other tick-borne flaviviruses. Notably, the dimeric form of the Za virus NS1 protein migrated in polyacrylamide gels as a heterogeneous group of molecules with a significantly higher electrophoretic mobility than those of the Sofjin and Vasilchenko viruses. Two amino acid substitutions, T277→V and E279→G, within the NS1 dimerization domain are probably responsible for the altered oligomerization of Za virus NS1. These studies suggest that the patient from whom Za virus was isolated died due to increased pathogenicity of the latent virus following spontaneous mutagenesis.


Author(s):  
Joon Young Song

Although no human case of tick-borne encephalitis (TBE) has been documented in South Korea to date, surveillance studies have been conducted to evaluate the prevalence of tick-borne encephalitis virus (TBEV) in wild ticks.


Author(s):  
Jana Kerlik

The former Czechoslovak Republic was one of the first countries in Europe where the tick-borne encephalitis virus (TBEV) was identified.


Sign in / Sign up

Export Citation Format

Share Document