Two dimensional eye movement recording using a photo-electric matrix method

1973 ◽  
Vol 13 (2) ◽  
pp. 425-431 ◽  
Author(s):  
Ronald Jones
1993 ◽  
Vol 2 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Kristinn R. Thorisson

The most common visual feedback technique in teleoperation is in the form of monoscopic video displays. As robotic autonomy increases and the human operator takes on the role of a supervisor, three-dimensional information is effectively presented by multiple, televised, two-dimensional (2-D) projections showing the same scene from different angles. To analyze how people go about using such segmented information for estimations about three-dimensional (3-D) space, 18 subjects were asked to determine the position of a stationary pointer in space; eye movements and reaction times (RTs) were recorded during a period when either two or three 2-D views were presented simultaneously, each showing the same scene from a different angle. The results revealed that subjects estimated 3-D space by using a simple algorithm of feature search. Eye movement analysis supported the conclusion that people can efficiently use multiple 2-D projections to make estimations about 3-D space without reconstructing the scene mentally in three dimensions. The major limiting factor on RT in such situations is the subjects' visual search performance, giving in this experiment a mean of 2270 msec (SD = 468; N = 18). This conclusion was supported by predictions of the Model Human Processor (Card, Moran, & Newell, 1983), which predicted a mean RT of 1820 msec given the general eye movement patterns observed. Single-subject analysis of the experimental data suggested further that in some cases people may base their judgments on a more elaborate 3-D mental model reconstructed from the available 2-D views. In such situations, RTs and visual search patterns closely resemble those found in the mental rotation paradigm (Just & Carpenter, 1976), giving RTs in the range of 5-10 sec.


2017 ◽  
Vol 2017.30 (0) ◽  
pp. 078
Author(s):  
Kei MATSUSHIMA ◽  
Hiroshi ISAKARI ◽  
Toru TAKAHASHI ◽  
Toshiro MATSUMOTO

2021 ◽  
Vol 45 (4) ◽  
pp. 571-585
Author(s):  
AMIRAHMAD KHAJEHNASIRI ◽  
◽  
M. AFSHAR KERMANI ◽  
REZZA EZZATI ◽  
◽  
...  

This article presents a numerical method for solving nonlinear two-dimensional fractional Volterra integral equation. We derive the Hat basis functions operational matrix of the fractional order integration and use it to solve the two-dimensional fractional Volterra integro-differential equations. The method is described and illustrated with numerical examples. Also, we give the error analysis.


Sign in / Sign up

Export Citation Format

Share Document