The static and dynamic characteristics of the spiral grooved thrust bearing

Wear ◽  
1965 ◽  
Vol 8 (5) ◽  
pp. 414
2000 ◽  
Vol 123 (3) ◽  
pp. 501-508 ◽  
Author(s):  
S. Yoshimoto ◽  
K. Kohno

Recently, graphite porous material has been used successfully in an aerostatic bearing. In actual bearing design, it is often necessary to reduce the thickness of porous material to make the bearing smaller. However, a reduction in thickness results in a reduction in the strength of the porous material. In particular, when the diameter of porous material is large, it is difficult to supply the air through the full pad area of porous material because it deforms. Therefore, in this paper, two types of air supply method (the annular groove supply and the hole supply) in a circular aerostatic porous thrust bearing are proposed to avoid the deflection of the bearing surface. The static and dynamic characteristics of aerostatic porous bearing with these air supply methods are investigated theoretically and experimentally. In addition, the effects of a surface restricted layer on the characteristics are clarified.


Author(s):  
Chenggang Fang ◽  
Wucheng You ◽  
Dehong Huo

This paper investigates the static and dynamic characteristics of the precision hydrostatic spindle with a mid-thrust bearing under different working conditions. Firstly, the paper establishes the fluid governing equations of the coupled journal and thrust bearings based on orifice restrictors; and the dynamic and static Reynolds equations are solved using the perturbation and finite difference methods to obtain the steady and transient pressure distribution functions. Then the stiffness and damping characteristics of matrixes of the spindle are obtained by integrating the steady and transient pressure. Furthermore, by establishing the motion equation for the spindle rotor with five degrees of freedom, the quasi-static equilibrium position and stability criterion of the rotor under different working conditions are determined. Finally, the relationships between the dynamic and static characteristics of the spindle and cutting force, rotational speed, and cutting distance are simulated and analyzed. The simulation results show the patterns of variation in performance indices such as stiffness, damping, quasi-static position, and stability of the spindle under different working conditions, which provides important design information to be taken into consideration concerning the precision hydrostatic spindle.


1965 ◽  
Vol 87 (3) ◽  
pp. 547-555 ◽  
Author(s):  
S. B. Malanoski ◽  
C. H. T. Pan

A generalized analysis for spiral-grooved thrust bearings is presented. The effects of local radius are considered. For the same grooving geometry and the same inside-to-outside radius ratio, the inflow design is shown to be superior in both stiffness and load capacity. The analysis also treats a relative, transverse, oscillatory motion of the bearing surfaces. Both the magnitude and phase angle (in the temporal sense) of the bearing reaction are dependent on the frequency of the motion. The results for the oscillating motion reveal the possibility of a self-excited, rotor-bearing instability. The criterion for determining the onset of this type of instability is given.


Author(s):  
Dong-Jin Park ◽  
Yong-Bok Lee ◽  
Chang-Ho Kim ◽  
Gun-Hee Jang

The thrust pad of the rotor is used to sustain the axial force generated due to the pressure difference between the compressor and turbine sides of turbomachinery such as the gas turbines and turbochargers. Furthermore, this thrust pad has a role to maintain and determines the attitude of the rotor. In a real system, it also helps reinforce the stiffness and damping of the journal bearing. This study was performed for the purpose of analyzing the characteristics of the air foil thrust bearing. The model for the air foil thrust bearing used in this study is composed of two parts: one is an inclined plane, which plays a role to increase the load carrying capacity using the physical wedge effect, and the other is a flat plane. This study mainly consists of three parts. First, the static characteristics were obtained over the region of the thin air film using the finite difference method (FDM) and the bump foil characteristics using the finite element method (FEM). Second, the analysis of the dynamic characteristics was conducted by perturbation method. For more exact calculation, the rarefaction gas coefficients perturbed about the pressure and film thickness were taken into consideration. At last, the static and dynamic characteristics of the tilting condition of the thrust pad were obtained. Furthermore, the load carrying capacity and torque were calculated for both tilting and not-tilting conditions. From this study, several results were presented: 1) the stiffness and damping of the bump foil under the condition of the various bump parameters, 2) the load carrying capacity and bearing torque at the tilting state, 3) the bearing performance under various bearing parameters, 4) the effects considering the rarefaction gas coefficients.


Sign in / Sign up

Export Citation Format

Share Document