Determination of contact deformation in flat junctions by the random field method

Wear ◽  
1988 ◽  
Vol 127 (1) ◽  
pp. 53-63
Author(s):  
N.K. Myshkin ◽  
N.F. Semeniuk ◽  
G.S. Kalda
2013 ◽  
Vol 24 (5) ◽  
pp. 1051-1060 ◽  
Author(s):  
Fei CHEN ◽  
Yi-Qun LIU ◽  
Chao WEI ◽  
Yun-Liang ZHANG ◽  
Min ZHANG ◽  
...  

Soil Research ◽  
1989 ◽  
Vol 27 (4) ◽  
pp. 663 ◽  
Author(s):  
EA Close ◽  
HKJ Powell

This paper examines the use of short extraction times, and the determination of aluminium with chrome azurol S (CAS), for the estimation of 0.02 M CaCl2-soluble aluminium in soils. It reports the correlation between CAS-reactive aluminium in 5 min extracts and percent maximum yield of white clover (Trifolium repens) for a series of acid soils. The reactivity of soluble and colloidal aluminium species with the metallochromic reagent CAS has been assessed. ~ l ( a q ) ~ + , simple hydroxy species and complexes of weakly binding ligands (salicylic acid, tannins) are CAS-reactive (2 rnin). In contrast, complexes of strongly binding ligands (citric acid, fulvic acid) are not CAS-reactive ([Al] ~ [L] ~ [CAS] ~ 1-2~10-5 M). For a series of six limed phosphated topsoils and subsoils (pH 4.2-5.5), 0.02 M CaCl2- soluble aluminium, as determined with CAS, was negatively correlated against the percent maximum yield of white clover; r2 = -0.73** (5 min extraction), n = 20. This correlation is similar to that for yield against total aluminium as determined by atomic absorption spectroscopy after 60 min extraction (r2 = -0.77**). However, the colorimetric analysis is more convenient and sensitive; further, it does not measure colloidal and polymeric aluminium species (which may not be plant-available). The satisfactory correlation achieved for short extraction times suggests use of CAS for a rapid field method for aluminium toxicity in soils.


2003 ◽  
Vol 40 (2) ◽  
pp. 450-459 ◽  
Author(s):  
D Y Zhu ◽  
C F Lee ◽  
K T Law

The Terzaghi superposition assumption has been widely used to determine the bearing capacity of shallow footings. Although this assumption always errs on the safe side, a rigorous procedure to calculate the bearing capacity is still of engineering value. This paper presents such a procedure that is free from errors as a result of the superposition assumption. It demonstrates that the ultimate bearing capacity can be precisely expressed by the Terzaghi equation, except that the bearing capacity factor Nγ is dependent upon the surcharge ratio. A recently developed numerical method, i.e., the critical slip field method, is used to calculate the modification coefficient for modifying Nγ. It is found that this modification coefficient increases with the surcharge ratio at small values of surcharge ratio and then remains constant for large values of surcharge ratio. However, the errors invoked by the superposition assumption do not exceed 10%. On the basis of numerical calculations, a simple closed-form expression of the modification coefficient is proposed that yields the theoretically rigorous ultimate bearing capacity. In the later part of the paper, errors in bearing capacity calculations owing to the use of conventional procedures are analyzed. It is concluded that the continued use of conventional procedures is justified, but the inherent errors should not be neglected in assessing the performance of shallow foundations.Key words: shallow foundation, strip footing, ultimate bearing capacity, critical slip field.


Circular ◽  
1951 ◽  
Author(s):  
Laura E. Reichen ◽  
F.N. Ward
Keyword(s):  

1961 ◽  
Vol 33 (9) ◽  
pp. 1175-1180 ◽  
Author(s):  
L. J. Snyder ◽  
S. R. Henderson

2021 ◽  
pp. 81-86
Author(s):  

The influence of kinematic loading schemes on the formation of an elastoplastic wave under the orbital action of an indenter is considered. A mathematical model of hardening is presented, which determines the size and stressstrain state of the wave. The loading parameters influencing the wave size are determined. Keywords: kinematic diagram, orbital loading, deforming element, elastoplastic deformation, non-contact deformation, elastoplastic wave [email protected]


The Analyst ◽  
1969 ◽  
Vol 94 (1118) ◽  
pp. 369 ◽  
Author(s):  
D. W. Meddle ◽  
D. W. Radford ◽  
R. Wood
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document