Temperature dependent sex determination in olive ridley turtle

1985 ◽  
Vol 16 ◽  
pp. 19
2019 ◽  
Vol 13 (5-6) ◽  
pp. 286-296
Author(s):  
Verónica Díaz-Hernández ◽  
Paloma Dominguez-Mora ◽  
Luis Chino-Palomo ◽  
Alejandro Marmolejo-Valencia ◽  
Martha Harfush ◽  
...  

The sex of sea turtles is determined by temperature during egg incubation. Thus, climate change affects the sex ratio, exacerbating their vulnerability to extinction. Understanding spatiotemporal effects of temperature on sex determination at the gonadal level may facilitate the design of strategies to mitigate the effects of global warming. Here, we used qRT-PCR and immunofluorescence to analyze the spatiotemporal expression of <i>Dmrt1 </i>and <i>Foxl2</i> in developing gonads of <i>Lepidochelys olivacea</i> incubated at male-producing temperature (MPT, 26°C) or female-producing temperature (FPT, 33°C). Although both transcription factors are expressed in bipotential gonads up to stage 25, the timing of their sexually dimorphic regulation differs. Whereas the dimorphic expression of Dmrt1 protein initiates at stage 24, Foxl2 protein was expressed specifically in females at stage 25. Interestingly, whereas Dmrt1 colocalizes with Sox9 in cell nuclei of primary medullary cords to form the testis cords, Foxl2 protein is first detected in Sox9-negative cells of primary medullary cords, prior to its substantial expression in the ovarian cortex. Thus, results suggest that the temperature-dependent regulation of sexual pathways is stochastic among the cells of primary medullary cords in undifferentiated bipotential gonads of the olive ridley.


2021 ◽  
pp. 1-9
Author(s):  
Horacio Merchant-Larios ◽  
Verónica Díaz-Hernández ◽  
Diego Cortez

The discovery in mammals that fetal testes are required in order to develop the male phenotype inspired research efforts to elucidate the mechanisms underlying gonadal sex determination and differentiation in vertebrates. A pioneer work in 1966 that demonstrated the influence of incubation temperature on sexual phenotype in some reptilian species triggered great interest in the environment’s role as a modulator of plasticity in sex determination. Several chelonian species have been used as animal models to test hypotheses concerning the mechanisms involved in temperature-dependent sex determination (TSD). This brief review intends to outline the history of scientific efforts that corroborate our current understanding of the state-of-the-art in TSD using chelonian species as a reference.


2011 ◽  
Vol 7 (3) ◽  
pp. 443-448 ◽  
Author(s):  
Alexander E. Quinn ◽  
Stephen D. Sarre ◽  
Tariq Ezaz ◽  
Jennifer A. Marshall Graves ◽  
Arthur Georges

Sex in many organisms is a dichotomous phenotype—individuals are either male or female. The molecular pathways underlying sex determination are governed by the genetic contribution of parents to the zygote, the environment in which the zygote develops or interaction of the two, depending on the species. Systems in which multiple interacting influences or a continuously varying influence (such as temperature) determines a dichotomous outcome have at least one threshold. We show that when sex is viewed as a threshold trait, evolution in that threshold can permit novel transitions between genotypic and temperature-dependent sex determination (TSD) and remarkably, between male (XX/XY) and female (ZZ/ZW) heterogamety. Transitions are possible without substantive genotypic innovation of novel sex-determining mutations or transpositions, so that the master sex gene and sex chromosome pair can be retained in ZW–XY transitions. We also show that evolution in the threshold can explain all observed patterns in vertebrate TSD, when coupled with evolution in embryonic survivorship limits.


2018 ◽  
Vol 222 (1) ◽  
pp. jeb190215 ◽  
Author(s):  
Melanie D. Massey ◽  
Sarah M. Holt ◽  
Ronald J. Brooks ◽  
Njal Rollinson

Sign in / Sign up

Export Citation Format

Share Document