scholarly journals Evolutionary transitions between mechanisms of sex determination in vertebrates

2011 ◽  
Vol 7 (3) ◽  
pp. 443-448 ◽  
Author(s):  
Alexander E. Quinn ◽  
Stephen D. Sarre ◽  
Tariq Ezaz ◽  
Jennifer A. Marshall Graves ◽  
Arthur Georges

Sex in many organisms is a dichotomous phenotype—individuals are either male or female. The molecular pathways underlying sex determination are governed by the genetic contribution of parents to the zygote, the environment in which the zygote develops or interaction of the two, depending on the species. Systems in which multiple interacting influences or a continuously varying influence (such as temperature) determines a dichotomous outcome have at least one threshold. We show that when sex is viewed as a threshold trait, evolution in that threshold can permit novel transitions between genotypic and temperature-dependent sex determination (TSD) and remarkably, between male (XX/XY) and female (ZZ/ZW) heterogamety. Transitions are possible without substantive genotypic innovation of novel sex-determining mutations or transpositions, so that the master sex gene and sex chromosome pair can be retained in ZW–XY transitions. We also show that evolution in the threshold can explain all observed patterns in vertebrate TSD, when coupled with evolution in embryonic survivorship limits.

2018 ◽  
Author(s):  
Peta Hill ◽  
Christopher P. Burridge ◽  
Tariq Ezaz ◽  
Erik Wapstra

AbstractSex determination systems are exceptionally diverse and have undergone multiple and independent evolutionary transitions among species, particularly reptiles. However, the mechanisms underlying these transitions have not been established. Here we tested for differences in sex-linked markers in the only known reptile that is polymorphic for sex determination system, the spotted snow skink, Niveoscincus ocellatus, to quantify the genomic differences that have accompanied this transition. In a highland population, sex is determined genetically, whilst in a lowland population, offspring sex ratio is influenced by temperature. We found a similar number of sex-linked loci in each population, including shared loci, with genotypes consistent with male heterogamety (XY). However, population-specific linkage disequilibrium suggests greater divergence of sex chromosomes in the highland population. Our results suggest that transitions between sex determination systems (GSD and TSD-like systems) can be facilitated by subtle genetic differences.


2016 ◽  
Vol 113 (52) ◽  
pp. 15036-15041 ◽  
Author(s):  
Sébastien Leclercq ◽  
Julien Thézé ◽  
Mohamed Amine Chebbi ◽  
Isabelle Giraud ◽  
Bouziane Moumen ◽  
...  

Sex determination is a fundamental developmental pathway governing male and female differentiation, with profound implications for morphology, reproductive strategies, and behavior. In animals, sex differences between males and females are generally determined by genetic factors carried by sex chromosomes. Sex chromosomes are remarkably variable in origin and can differ even between closely related species, indicating that transitions occur frequently and independently in different groups of organisms. The evolutionary causes underlying sex chromosome turnover are poorly understood, however. Here we provide evidence indicating that Wolbachia bacterial endosymbionts triggered the evolution of new sex chromosomes in the common pillbug Armadillidium vulgare. We identified a 3-Mb insert of a feminizing Wolbachia genome that was recently transferred into the pillbug nuclear genome. The Wolbachia insert shows perfect linkage to the female sex, occurs in a male genetic background (i.e., lacking the ancestral W female sex chromosome), and is hemizygous. Our results support the conclusion that the Wolbachia insert is now acting as a female sex-determining region in pillbugs, and that the chromosome carrying the insert is a new W sex chromosome. Thus, bacteria-to-animal horizontal genome transfer represents a remarkable mechanism underpinning the birth of sex chromosomes. We conclude that sex ratio distorters, such as Wolbachia endosymbionts, can be powerful agents of evolutionary transitions in sex determination systems in animals.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1341
Author(s):  
Marcello Mezzasalma ◽  
Fabio M. Guarino ◽  
Gaetano Odierna

Lizards represent unique model organisms in the study of sex determination and sex chromosome evolution. Among tetrapods, they are characterized by an unparalleled diversity of sex determination systems, including temperature-dependent sex determination (TSD) and genetic sex determination (GSD) under either male or female heterogamety. Sex chromosome systems are also extremely variable in lizards. They include simple (XY and ZW) and multiple (X1X2Y and Z1Z2W) sex chromosome systems and encompass all the different hypothesized stages of diversification of heterogametic chromosomes, from homomorphic to heteromorphic and completely heterochromatic sex chromosomes. The co-occurrence of TSD, GSD and different sex chromosome systems also characterizes different lizard taxa, which represent ideal models to study the emergence and the evolutionary drivers of sex reversal and sex chromosome turnover. In this review, we present a synthesis of general genome and karyotype features of non-snakes squamates and discuss the main theories and evidences on the evolution and diversification of their different sex determination and sex chromosome systems. We here provide a systematic assessment of the available data on lizard sex chromosome systems and an overview of the main cytogenetic and molecular methods used for their identification, using a qualitative and quantitative approach.


Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 501
Author(s):  
Thitipong Panthum ◽  
Worapong Singchat ◽  
Nararat Laopichienpong ◽  
Syed Farhan Ahmad ◽  
Ekaphan Kraichak ◽  
...  

Sex determination systems (SDSs) in anurans are diverse and have undergone independent evolutionary transitions among species. The mode of sexual reproduction of the rice field frog (Hoplobatrachus rugulosus)—an economically viable, edible amphibian species—is not well known. Previous studies have proposed that threshold temperature conditions may determine sex in these frogs. To elucidate the SDS in H. rugulosus, we karyotyped 10 male and 12 female frogs, and performed fluorescence in situ hybridization combined with sequencing analyses using DArTseq™. Our results revealed a highly conserved karyotype with no sex chromosome heteromorphism, and the sequencing analyses did not identify any consistent sex-linked loci, supporting the hypothesis of temperature-dependent sex determination. The results of this study, and others, on SDSs in the rice field frog and related species also provide support for the theory that heteromorphic sex chromosomes may lead to an evolutionary trap that prevents variable SDSs. These findings add important information to the body of knowledge on H. rugulosus and are likely to have a significant impact on the productivity and economic success of rice field frog farming.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 291
Author(s):  
Peta Hill ◽  
Foyez Shams ◽  
Christopher P. Burridge ◽  
Erik Wapstra ◽  
Tariq Ezaz

Sex determination directs development as male or female in sexually reproducing organisms. Evolutionary transitions in sex determination have occurred frequently, suggesting simple mechanisms behind the transitions, yet their detail remains elusive. Here we explore the links between mechanisms of transitions in sex determination and sex chromosome evolution at both recent and deeper temporal scales (<1 Myr; ~79 Myr). We studied a rare example of a species with intraspecific variation in sex determination, Carinascincus ocellatus, and a relative, Liopholis whitii, using c-banding and mapping of repeat motifs and a custom Y chromosome probe set to identify the sex chromosomes. We identified both unique and conserved regions of the Y chromosome among C. ocellatus populations differing in sex determination. There was no evidence for homology of sex chromosomes between C. ocellatus and L. whitii, suggesting independent evolutionary origins. We discuss sex chromosome homology between members of the subfamily Lygosominae and propose links between sex chromosome evolution, sex determination transitions, and karyotype evolution.


2005 ◽  
Vol 49 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Ursula Mittwoch

The history of ideas on how the sexes became divided spans at least three thousand years. The biblical account of the origin of Eve, and the opinions of the philosophers of classical Greece, have unexpected bearings on present-day ideas. The scientific study of sex determination can be said to have begun in the 17th century with the discovery of spermatozoa, but the origin and function of the "spermatic animalcules" eluded investigators until 1841. The mammalian egg was discovered in 1827, and in the last quarter of the century fertilization was observed. The view current at that time, that sex determination was under environmental control, gave way to the idea of chromosomal determination in the first quarter of the 20th century. The study of human and other mammalian chromosomes during the third quarter of the century, and the discovery of sex-chromosome abnormalities, emphasized the importance of the Y chromosome for male sex determination. The last quarter of the century witnessed a hunt for the "testis-determining" gene, thought to be responsible for the differentiation of Sertoli cells, and culminating in the isolation of SRY (Sry in the mouse). However, an increasing number of additional genes and growth factors were found to be required for the establishment of male sex. During the same period evidence emerged that male development was accompanied by enhanced growth, both of gonads and whole embryos. An unexpected finding was the demonstration of temperature-dependent sex determination in reptiles. With the advent of the 21st century, it was shown that Sry induces cell proliferation in fetal mouse gonads, and it has been suggested that male sex differentiation in mammals requires a higher metabolic rate. These insights could lead to a better understanding and improved treatment of abnormalities of sexual development.


2016 ◽  
Author(s):  
Céline M.O. Reisser ◽  
Dominique Fasel ◽  
Evelin Hürlimann ◽  
Marinela Dukič ◽  
Cathy Haag-Liautard ◽  
...  

AbstractSex chromosomes can evolve during the evolution of genetic sex determination (GSD) from environmental sex determination (ESD). Despite theoretical attention, early mechanisms involved in the transition from ESD to GSD have yet to be studied in nature. No mixed ESD-GSD animal species have been reported, except for some species of Daphnia, small freshwater crustaceans in which sex is usually determined solely by the environment, but in which a dominant female sex-determining locus is present in some populations. This locus follows Mendelian single-locus inheritance, but has otherwise not been characterized genetically. We now show that the sex-determining genomic region maps to the same low-recombining peri-centromeric region of linkage group 3 (LG3) in three highly divergent populations of D. magna, and spans 3.6 Mb. Despite low levels of recombination, the associated region contains signs of historical recombination, suggesting a role for selection acting on several genes thereby maintaining linkage disequilibrium among the 36 associated SNPs. The region carries numerous genes involved in sex differentiation in other taxa, including transformer2 and sox9. Taken together, the region determining the NMP phenotype shows characteristics of a sex-related supergene, suggesting that LG3 is potentially an incipient W chromosome despite the lack of significant additional restriction of recombination between Z and W. The occurrence of the female-determining locus in a pre-existing low recombining region illustrates one possible form of recombination suppression in sex chromosomes. D. magna is a promising model for studying the evolutionary transitions from ESD to GSD and early sex chromosome evolution.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 483
Author(s):  
Wen-Juan Ma ◽  
Paris Veltsos

Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems.


2021 ◽  
pp. 1-9
Author(s):  
Horacio Merchant-Larios ◽  
Verónica Díaz-Hernández ◽  
Diego Cortez

The discovery in mammals that fetal testes are required in order to develop the male phenotype inspired research efforts to elucidate the mechanisms underlying gonadal sex determination and differentiation in vertebrates. A pioneer work in 1966 that demonstrated the influence of incubation temperature on sexual phenotype in some reptilian species triggered great interest in the environment’s role as a modulator of plasticity in sex determination. Several chelonian species have been used as animal models to test hypotheses concerning the mechanisms involved in temperature-dependent sex determination (TSD). This brief review intends to outline the history of scientific efforts that corroborate our current understanding of the state-of-the-art in TSD using chelonian species as a reference.


Sign in / Sign up

Export Citation Format

Share Document