Electron microscopic revision of the chromosome maps of drosophila melanogaster

1987 ◽  
Vol 20 ◽  
pp. 43
1963 ◽  
Vol 17 (2) ◽  
pp. 351-362 ◽  
Author(s):  
S. Ahmad Shafiq

The myofibrils in Drosophila have thick and thin types of myofilaments arranged in the hexagonal pattern described for Calliphora by Huxley and Hanson (15). The thick filaments, along most of their length in the A band, seem to be binary in structure, consisting of a dense cortex and a lighter medulla. In the H zone, however, they show more uniform density; lateral projections (bridges) also appear to be absent in this region. The M band has a varying number of granules (probably of glycogen) distributed between the myofilaments. The myofilaments on reaching the Z region appear to change their hexagonal arrangement and become connected to one another by Z filaments. The regular arrangement of the filaments found in most regions of the fibrils is not seen in the terminal sarcomeres of some flight muscles; the two types of filaments appear to be intermingled in an irregular pattern in these parts of the fibrils. The attachment of myofibrils to the cuticle through the epidermal cells is described.


1966 ◽  
Vol 28 (2) ◽  
pp. 199-208 ◽  
Author(s):  
F. A. Muckenthaler ◽  
A. P. Mahowald

Tritiated thymidine was injected into 2-day-old Drosophila melanogaster females, and tissue sections were prepared from the ovary for radioautography with both the light and electron microscopes. Besides the expected incorporation of H3-thymidine into nuclei of nurse cells and follicle cells, there was a relatively high level of incorporation of label into ooplasmic DNA. The highest level of incorporation occurred at stage 12. At the same time, the 15 nurse cell nuclei also incorporate thymidine in spite of the fact that they are breaking down and degenerating. The label in the ooplasm is not removed by extraction with DNase (although this removes nuclear label) unless extraction is preceded by a treatment with protease. Electron microscopic radioautography revealed that 36% of the silver grains resulting from decay of H3-thymidine are found over mitochondria, with a further 28% being located within 0.25 µ of these organelles. The remaining 36% of the silver grains was not found to be associated with any organelles, and it probably represents synthesis in the cytoplasm by the "storage DNA" characteristic of many eggs. It is suggested that one mechanism acting throughout the egg chamber is responsible for the synchronous synthesis of DNA in the degenerating nurse cells, in the mitochondria of the egg, and in the "storage DNA" of the ooplasm.


Sign in / Sign up

Export Citation Format

Share Document