high let
Recently Published Documents


TOTAL DOCUMENTS

600
(FIVE YEARS 67)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Narongchai Autsavapromporn ◽  
Alisa Kobayashi ◽  
Cuihua Liu ◽  
Churdsak Jaikang ◽  
Tengku Ahbrizal Tengku Ahmad ◽  
...  

Radiation-induced bystander effect (RIBE) has been identified as an important contributing factor to tumor resistance and normal tissue damage. However, the RIBE in cancer and normal cells under hypoxia remain unclear. In this study, confluent A549 cancer and WI-38 normal cells were subjected to condition of hypoxia or normoxia, before exposure to high-LET protons microbeam. After 6 h incubation, cells were harvested and assayed for colony formation, micronucleus formation, chromosome aberration and western blotting. Our results show that there were differences of RIBE in bystander A549 and WI-38 cells under hypoxia and normoxia. The differences were also observed in the roles of HIF-1α expression in bystander A549 and WI-38 cells under both conditions. Furthermore, inhibition of gap junction intercellular communication (GJIC) showed a decrease in toxicity of hypoxia-treated bystander A549 cells, but increased in bystander WI-38 cells. These findings clearly support that GJIC protection of bystander normal cells from toxicity while enhancing in bystander cancer cells. Together, the data show a promising strategy for high-LET radiation in designing an entire new line of drugs, either increase or restore GJIC in bystander cancer cells which in turn leads to enhancement of radiation accuracy for treatment of hypoxic tumors.


2022 ◽  
Vol 13 (2) ◽  
pp. 669-680
Author(s):  
Xiaogang Zheng ◽  
Bingtao Liu ◽  
Xiongxiong Liu ◽  
Ping Li ◽  
Pengcheng Zhang ◽  
...  

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 139
Author(s):  
Maximillian S. Westphal ◽  
Eunjee Lee ◽  
Eric E. Schadt ◽  
Giselle S. Sholler ◽  
Jun Zhu

Medulloblastoma (MB) is the most common pediatric embryonal brain tumor. The current consensus classifies MB into four molecular subgroups: sonic hedgehog-activated (SHH), wingless-activated (WNT), Group 3, and Group 4. MYCN and let-7 play a critical role in MB. Thus, we inferred the activity of miRNAs in MB by using the ActMiR procedure. SHH-MB has higher MYCN expression than the other subgroups. We showed that high MYCN expression with high let-7 activity is significantly associated with worse overall survival, and this association was validated in an independent MB dataset. Altogether, our results suggest that let-7 activity and MYCN can further categorize heterogeneous SHH tumors into more and less-favorable prognostic subtypes, which provide critical information for personalizing treatment options for SHH-MB. Comparing the expression differences between the two SHH-MB prognostic subtypes with compound perturbation profiles, we identified FGFR inhibitors as one potential treatment option for SHH-MB patients with the less-favorable prognostic subtype.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 116
Author(s):  
Ramon Ortiz ◽  
Ludovic De Marzi ◽  
Yolanda Prezado

(1) Background: Proton Arc Therapy and Proton Minibeam Radiation Therapy are two novel therapeutic approaches with the potential to lower the normal tissue complication probability, widening the therapeutic window for radioresistant tumors. While the benefits of both modalities have been individually evaluated, their combination and its potential advantages are being assessed in this proof-of-concept study for the first time. (2) Methods: Monte Carlo simulations were employed to evaluate the dose and LET distributions in brain tumor irradiations. (3) Results: a net reduction in the dose to normal tissues (up to 90%), and the preservation of the spatial fractionation of the dose were achieved for all configurations evaluated. Additionally, Proton Minibeam Arc Therapy (pMBAT) reduces the volumes exposed to high-dose and high-LET values at expense of increased low-dose and intermediate-LET values. (4) Conclusions: pMBAT enhances the individual benefits of proton minibeams while keeping those of conventional proton arc therapy. These results might facilitate the path towards patients’ treatments since lower peak doses in normal tissues would be needed than in the case of a single array of proton minibeams.


2021 ◽  
Vol 25 (2) ◽  
pp. 57-64
Author(s):  
Manel Bouhouche ◽  
◽  
Saida Latreche ◽  

This paper analyzes the single event transient (SET) response of low noise amplifier (LNA) designed using SiGe heterojunction bipolar transistors (HBT). To verify the radiation tolerance of the proposed LNA, a total of four cascode configurations were designed. Comprehensive mixed-mode simulations were performed to evaluate the SET susceptibility of considered LNA cascode configurations, and we have analyzed how the strike parameters affect their output response. In this fact the strike position, linear energy transfer (LET), and track radius, were varied, and the resulting transients were compared for the different LNA configurations. Through this study, the potential capability of the inverse mode SiGe heterojunction bipolar transistor (HBT) in LNA radiation tolerance was confirmed for various strike operating conditions. It has been demonstrated that the single event sensitivity was reduced for LNA employing inverse mode SiGe HBT for strike device. The strike influence on the different LNA configurations response depends on strike LET, where a reduced SET variation is observed for high LET.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bing Wang ◽  
Takanori Katsube ◽  
Kaoru Tanaka ◽  
Masahiro Murakami ◽  
Mitsuru Nenoi

Background and Purpose. Postexposure onset of dietary restriction (DR) is expected to provide therapeutic nutritional approaches to reduce health risk from exposure to ionizing radiation (IR) due to such as manned space exploration, radiotherapy, or nuclear accidents as IR could alleviate radiocarcinogenesis in animal models. However, the underlying mechanisms remain largely unknown. This study is aimed at investigating the effect from postexposure onset of DR on genotoxicity and genomic instability (GI) induced by total body irradiation (TBI) in mice. Materials and Methods. Mice were exposed to 2.0 Gy of accelerated iron particles with an initial energy of 500 MeV/nucleon and a linear energy transfer (LET) value of about 200 keV/μm. After TBI, mice were either allowed to free access to a standard laboratory chow or treated under DR (25% cut in diet). Using micronucleus frequency (MNF) in bone marrow erythrocytes, induction of acute genotoxicity and GI in the hematopoietic system was, respectively, determined 1 and 2 months after TBI. Results and Conclusions. TBI alone caused a significant increase in MNF while DR alone did not markedly influence the MNF. DR induced a significant decrease in MNF compared to the treatment by TBI alone. Results demonstrated that postexposure onset of DR could relieve the elevated MNF induced by TBI with high-LET iron particles. These findings indicated that reduction in acute genotoxicity and late GI may be at least a part of the mechanisms underlying decreased radiocarcinogenesis by DR.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2272
Author(s):  
Veronica De Micco ◽  
Sara De Francesco ◽  
Chiara Amitrano ◽  
Carmen Arena

The realization of manned missions for space exploration requires the development of Bioregenerative Life Support Systems (BLSSs) to make human colonies self-sufficient in terms of resources. Indeed, in these systems, plants contribute to resource regeneration and food production. However, the cultivation of plants in space is influenced by ionizing radiation which can have positive, null, or negative effects on plant growth depending on intrinsic and environmental/cultivation factors. The aim of this study was to analyze the effect of high-LET (Linear Energy Transfer) ionizing radiation on seed germination and seedling development in eye bean. Dry seeds of Dolichos melanophthalmus DC. (eye bean) were irradiated with two doses (1 and 10 Gy) of C- and Ti-ions. Seedlings from irradiated seeds were compared with non-irradiated controls in terms of morpho-anatomical and biochemical traits. Results showed that the responses of eye bean plants to radiation are dose-specific and dependent on the type of ion. The information obtained from this study will be useful for evaluating the radio-resistance of eye bean seedlings, for their possible cultivation and utilization as food supplement in space environments.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5232
Author(s):  
Jae-Kyung Nam ◽  
Ji-Hee Kim ◽  
Min-Sik Park ◽  
Eun Ho Kim ◽  
Joon Kim ◽  
...  

High linear energy transfer (LET) radiation, such as neutron radiation, is considered more effective for the treatment of cancer than low LET radiation, such as X-rays. We previously reported that X-ray irradiation induced endothelial-to-mesenchymal transition (EndMT) and profibrotic changes, which contributed to the radioresistance of tumors. However, this effect was attenuated in tumors of endothelial-specific Trp53-knockout mice. Herein, we report that compared to X-ray irradiation, neutron radiation therapy reduced collagen deposition and suppressed EndMT in tumors. In addition to the fewer fibrotic changes, more cluster of differentiation (CD8)-positive cytotoxic T cells were observed in neutron-irradiated regrowing tumors than in X-ray-irradiated tumors. Furthermore, lower programmed death-ligand 1 (PD-L1) expression was noted in the former. Endothelial-specific Trp53 deletion suppressed fibrotic changes within the tumor environment following both X-ray and neutron radiation therapy. In particular, the upregulation in PD-L1 expression after X-ray radiation therapy was significantly dampened. Our findings suggest that compared to low LET radiation therapy, high LET radiation therapy can efficiently suppress profibrotic changes and enhance the anti-tumor immune response, resulting in delayed tumor regrowth.


Author(s):  
Pavel Lobachevsky ◽  
Colin Skene ◽  
Laura Munforte ◽  
Andrea Smith ◽  
Jonathan White ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document