scholarly journals ELECTRON MICROSCOPIC STUDIES ON THE INDIRECT FLIGHT MUSCLES OF DROSOPHILA MELANOGASTER

1963 ◽  
Vol 17 (2) ◽  
pp. 351-362 ◽  
Author(s):  
S. Ahmad Shafiq

The myofibrils in Drosophila have thick and thin types of myofilaments arranged in the hexagonal pattern described for Calliphora by Huxley and Hanson (15). The thick filaments, along most of their length in the A band, seem to be binary in structure, consisting of a dense cortex and a lighter medulla. In the H zone, however, they show more uniform density; lateral projections (bridges) also appear to be absent in this region. The M band has a varying number of granules (probably of glycogen) distributed between the myofilaments. The myofilaments on reaching the Z region appear to change their hexagonal arrangement and become connected to one another by Z filaments. The regular arrangement of the filaments found in most regions of the fibrils is not seen in the terminal sarcomeres of some flight muscles; the two types of filaments appear to be intermingled in an irregular pattern in these parts of the fibrils. The attachment of myofibrils to the cuticle through the epidermal cells is described.

1989 ◽  
Vol 109 (5) ◽  
pp. 2157-2167 ◽  
Author(s):  
J D Saide ◽  
S Chin-Bow ◽  
J Hogan-Sheldon ◽  
L Busquets-Turner ◽  
J O Vigoreaux ◽  
...  

Twelve monoclonal antibodies have been raised against proteins in preparations of Z-disks isolated from Drosophila melanogaster flight muscle. The monoclonal antibodies that recognized Z-band components were identified by immunofluorescence microscopy of flight muscle myofibrils. These antibodies have identified three Z-disk antigens on immunoblots of myofibrillar proteins. Monoclonal antibodies alpha:1-4 recognize a 90-100-kD protein which we identify as alpha-actinin on the basis of cross-reactivity with antibodies raised against honeybee and vertebrate alpha-actinins. Monoclonal antibodies P:1-4 bind to the high molecular mass protein, projectin, a component of connecting filaments that link the ends of thick filaments to the Z-band in insect asynchronous flight muscles. The anti-projectin antibodies also stain synchronous muscle, but, surprisingly, the epitopes here are within the A-bands, not between the A- and Z-bands, as in flight muscle. Monoclonal antibodies Z(210):1-4 recognize a 210-kD protein that has not been previously shown to be a Z-band structural component. A fourth antigen, resolved as a doublet (approximately 400/600 kD) on immunoblots of Drosophila fibrillar proteins, is detected by a cross reacting antibody, Z(400):2, raised against a protein in isolated honeybee Z-disks. On Lowicryl sections of asynchronous flight muscle, indirect immunogold staining has localized alpha-actinin and the 210-kD protein throughout the matrix of the Z-band, projectin between the Z- and A-bands, and the 400/600-kD components at the I-band/Z-band junction. Drosophila alpha-actinin, projectin, and the 400/600-kD components share some antigenic determinants with corresponding honeybee proteins, but no honeybee protein interacts with any of the Z(210) antibodies.


1982 ◽  
Vol 107 (2) ◽  
pp. 189-194 ◽  
Author(s):  
H. OKAMOTO ◽  
S. IMAMURA ◽  
T. AOSHIMA ◽  
J. KOMURA ◽  
S. OFUJI

1973 ◽  
Vol 51 (9) ◽  
pp. 1619-1622 ◽  
Author(s):  
J. L. Anderson ◽  
W. W. Thomson ◽  
J. A. Swader

Light and electron microscopic studies of Wolffia arrhiza L. frond development during vegetative reproduction showed that the fronds were composed entirely of chlorenchymous cells. Chloroplasts in the epidermal cells other than the guard cells were unique in that they contained no starch. Cell division occurred only at the proximal end of daughter fronds early in their development. Meristematic cells contained chloroplasts with clearly defined grana. Proplastids, commonly observed in meristematic cells of apical regions of other plants, were absent in the cells of these plants.


1963 ◽  
Vol 17 (2) ◽  
pp. 363-0373 ◽  
Author(s):  
S. Ahmad Shafiq

The differentiation of the indirect flight muscles was studied in the various pupal stages of Drosophila. Fibrillar material originates in the young basophilic myoblasts in the form of short myofilamants distributed irregularly near the cell membranes. The filaments later become grouped into bundles (fibrils). Certain "Z bodies" appear to be important during this process. The "Z bodies" may possibly be centriolar derivatives and are the precursors of the Z bands. The first formed fibrils (having about 30 thick myofilaments) are already divided into sarcomeres by Z bands. These sarcomeres, however, seem to be shorter than those of the adult fibrils.The H band differentiates in fibrils having about 40 thick myofilaments; the fibrils constrict in the middle of each sarcomere during this process. The individual myofibrils increase from about 0.3 µ to 1.5 µ in diameter during development, apparently by addition of new filaments on the periphery of the fibrils. The ribosomes seem to be the only cytoplasmic inclusions which are closely associated with these growing myofibrils. Disintegration of the plasma membranes limiting individual myoblasts was commonly seen during development of flight muscles, supporting the view that the multinuclear condition of the fibers of these muscles is due to fusion of myoblasts.


2020 ◽  
Author(s):  
Nadia Daneshparvar ◽  
Dianne W. Taylor ◽  
Thomas S. O’Leary ◽  
Hamidreza Rahmani ◽  
Fatemeh Abbasi Yeganeh ◽  
...  

AbstractStriated muscle thick filaments are composed of myosin II and several non-myosin proteins. Myosin II’s long α-helical coiled-coil tail forms the dense protein backbone of filaments while its N-terminal globular head containing the catalytic and actin binding activities extends outward from the backbone. Here we report the structure of thick filaments of the flight muscle of the fruit fly Drosophila melanogaster at 7 Å resolution. Its myosin tails are arranged in curved molecular crystalline layers identical to flight muscles of the giant waterbug Lethocerus indicus. Four non-myosin densities are observed, three of which correspond to ones found in Lethocerus; one new density, possibly stretchin-Mlck, is found on the backbone outer surface. Surprisingly, the myosin heads are disordered rather than ordered along the filament backbone. Our results show striking myosin tail similarity within flight muscle filaments of two insect orders separated by several hundred million years of evolution.Significance StatementMyosin thick filaments are one of striated muscle’s key structures, but also one of its least understood. A key question is how the myosin a-helical coiled-coil tail is arranged in the backbone. At 7Å resolution, sufficient to resolve individual a-helices, the myosin tail arrangement in thick filaments from the flight muscle of the fruit fly Drosophila melanogaster is strikingly similar to the myosin tail arrangement in flight muscles of the giant waterbug Lethocerus indicus. Nearly every other thick filament feature is different. Drosophila and Lethocerus evolved separately >245 million years ago suggesting myosin tail packing into curved molecular crystalline layers forms a highly conserved thick filament building block and different properties are obtained by alterations in non-myosin proteins.


Author(s):  
Kenneth A. Taylor ◽  
David A. Grano ◽  
Wah Chiu

Based on chemical and electron microscopic studies (Buckmire and Murray, 1970), the cell wall of Spirillum serpens VHA, a Gram-negative bacterium, is composed of several components including protein, lipopolysaccharide, and peptidoglycan. By a gentle heating of the bacteria at 60°C, the outermost components of the cell wall are separated from the rest of the cell, and can be purified by simple procedures. In the negatively stained preparations, it has been shown by Buckmire and Murray that these components appear in both lamellar and tubular forms made up of identical particles in a closely packed hexagonal arrangement. These particles are approximately 90 Å in diameter, with a center-to-center spacing of approximately 150 Å, and are connected by Y-shaped links.


Author(s):  
Jan Zarzycki ◽  
Joseph Szroeder

The mammary gland ultrastructure in various functional states is the object of our investigations. The material prepared for electron microscopic examination by the conventional chemical methods has several limitations, the most important are the protein denaturation processes and the loss of large amounts of chemical constituents from the cells. In relevance to this,one can't be sure about a degree the observed images are adequate to the realy ultrastructure of a living cell. To avoid the disadvantages of the chemical preparation methods,some autors worked out alternative physical methods based on tissue freezing / freeze-drying, freeze-substitution, freeze-eatching techniqs/; actually the technique of cryoultraraicrotomy,i,e.cutting ultrathin sections from deep frozen specimens is assented as a complete alternative method. According to the limitations of the routine plastic embbeding methods we were interested to analize the mammary gland ultrastructure during lactation by the cryoultramicrotomy method.


Sign in / Sign up

Export Citation Format

Share Document