scholarly journals Numerical analysis of wood-high-density polyethylene composites: A hyperelastic approach

2018 ◽  
Vol 53 (1) ◽  
pp. 73-82
Author(s):  
Alejandro E Rodríguez-Sánchez ◽  
Alejandro Vega-Rios ◽  
Sergio G Flores-Gallardo ◽  
E Armando Zaragoza-Contreras ◽  
Mónica E Mendoza-Duarte

The application of a hyperelastic approach to simulate the tensile mechanical behavior of wood fiber/polymer composites is proposed. This research was conducted with the purpose of selecting the theoretical model that best fits the experimental data for use in the finite element model. The analyses by the four strain energy density functions (Polynomial, Ogden, Yeoh, and Marlow models) and the Cauchy-Green tensor invariants were used as the theoretical models. The experimental mechanical behavior of three wood fiber/polymer composites formulated with high-density polyethylene as the polymer matrix, and pine, cherry, and walnut sawdust as the fillers, at a concentration of 40 wt%, was evaluated. Experimental data showed that with filler addition, the tensile modulus of the high-density polyethylene matrix increased almost 131% regarding the neat high-density polyethylene; however, no significant differences were found respecting the kind of sawdust. Nevertheless, it was found that the elongation (%) at break was higher when walnut sawdust was employed. As for the strain energy density function analyses, the best approximation to the experimental data was achieved by the Marlow model, because this model only demands the sum of the principal extension ratios for a polymer-based material, I1. The numerical results showed that the proposed finite element model predicts the response with less than 1% error, regarding the experimental data, and consequently the use of the finite element models was simplified for the prediction of the tensile mechanical behavior of this kind of composites.

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Héctor E. Jaramillo

Due to the importance of the intervertebral disc in the mechanical behavior of the human spine, special attention has been paid to it during the development of finite element models of the human spine. The mechanical behavior of the intervertebral disc is nonlinear, heterogeneous, and anisotropic and, due to the low permeability, is usually represented as a hyperelastic model. The intervertebral disc is composed of the nucleus pulposus, the endplates, and the annulus fibrosus. The annulus fibrosus is modeled as a hyperelastic matrix reinforced with several fiber families, and researchers have used different strain energy density functions to represent it. This paper presents a comparative study between the strain energy density functions most frequently used to represent the mechanical behavior of the annulus fibrosus: the Yeoh and Mooney-Rivlin functions. A finite element model of the annulus fibrosus of the L4-L5 segment under the action of three independent and orthogonal moments of 8 N-m was used, employing Abaqus software. A structured mesh with eight divisions along the height and the radial direction of annulus fibrosus and tetrahedron elements for the endplates were used, and an exponential energy function was employed to represent the mechanical behavior of the fibers. A total of 16 families were used; the fiber orientation varied with the radial coordinate from 25° on the outer boundary to 46° on the inner boundary, measuring it with respect to the transverse plane. The mechanical constants were taken from the reported literature. The range of motion was obtained by finite element analysis using different values of the mechanical constants and these results were compared with the reported experimental data. It was found that the Yeoh function showed a better fit to the experimental range of motion than the Mooney-Rivlin function, especially in the nonlinear region.


2007 ◽  
Vol 348-349 ◽  
pp. 413-416
Author(s):  
M. Zappalorto ◽  
Filippo Berto ◽  
Paolo Lazzarin

A recent approach based on the local strain energy density (SED) averaged over a given control volume is applied to well documented experimental data taken from the literature, all related to steel welded joints of complex geometry. This small size volume embraces the weld root or the weld toe, both regions modelled as sharp (zero notch radius) V-notches with different opening angles. The SED is evaluated from three-dimensional finite element models by using a circular sector with a radius equal to 0.28 mm. The data expressed in terms of the local energy fall in a scatter band recently reported in the literature, based on about 650 experimental data related to fillet welded joints made of structural steel with failures occurring at the weld toe or at the weld root.


1996 ◽  
Vol 436 ◽  
Author(s):  
R. P. Vinci ◽  
J. C. Bravman

AbstractWe have modeled the effects of grain aspect ratio on strain energy density in (100)-oriented grains in a (111)-textured Cu film on a Si substrate. Minimization of surface energy, interface energy, and strain energy density (SED) drives preferential growth of grains of certain crystallographic orientations in thin films. Under conditions in which the SED driving force exceeds the surface- and interface-energy driving forces, Cu films develop abnormally large (100) oriented grains during annealing. In the elastic regime the SED differences between the (100) grains and the film average arise from elastic anisotropy. Previous analyses indicate that several factors (e.g. elimination of grain boundaries during grain growth) may alter the magnitude of the SED driving force. We demonstrate, using finite element modeling of a single columnar (100) grain in a (111) film, that changes in grain aspect ratio can significantly affect the SED driving force. A minimum SED driving force is found for (100) Cu grains with diameters on the order of the film thickness. In the absence of other stagnation mechanisms, such behavior could cause small grains to grow abnormally and then stagnate while large grains continue to grow. This would lead to a bimodal grain size distribution in the (100) grains preferred by the SED minimization.


2019 ◽  
Vol 2019 ◽  
pp. 1-24 ◽  
Author(s):  
Hongyuan Fang ◽  
Peiling Tan ◽  
Bin Li ◽  
Kangjian Yang ◽  
Yunhui Zhang

For flexible pipelines, the influence of backfill compaction on the deformation of the pipe has always been the focus of researchers. Through the finite element software, a three-dimensional soil model matching the exterior wall corrugation of the high-density polyethylene pipe was skillfully established, and the “real” finite element model of pipe-soil interaction verified the accuracy through field test. Based on the model, the strain distribution at any position of the buried HDPE pipe can be obtained. Changing the location and extent of the loose backfill, the strain and radial displacement distributions of the interior and exterior walls of the HDPE pipe under different backfill conditions when external load applied to the foundation were analyzed, and the dangerous parts of the pipe where local buckling and fracture may occur were identified. It is pointed out that when the backfill is loose, near the interface between the backfill loose region and the well-compacted region, the maximum circumferential strain occurs frequently, the exterior wall strain is more likely to increase greatly on the region near crown or invert, the interior wall strains increase in amplitude at springline, and the location of the loose region has a greater influence on the strain of the pipe than the size of the loose area.


1971 ◽  
Vol 93 (2) ◽  
pp. 138-145 ◽  
Author(s):  
B. R. Simon ◽  
A. S. Kobayashi ◽  
D. E. Strandness ◽  
C. A. Wiederhielm

Possible relations between arterial wall stresses and deformations and mechanisms contributing to atherosclerosis are discussed. Necessary material properties are determined experimentally and from available data in the literature by assuming the arterial response to be a static finite deformation of a thick-walled cylinder constrained in a state of plane strain and composed of an incompressible, nonlinear elastic, transversely isotropic material. Experimental justification from the literature and supporting theoretical considerations are presented for each assumption. The partial derivative of the strain energy density function δW1/δI , necessary for in-plane stress calculation, is determined to be of exponential form using in situ biaxial test results from the canine abdominal aorta. An axisymmetric numerical integration solution is developed and used as a check for finite element results. The large deformation finite element theory of Oden is modified to include aortic material nonlinearity and directional properties and is used for a structural analysis of the aortic cross section. Results of this investigation are: (a) Fung’s exponential form for the strain energy density function of soft tissues is found to be valid for the aorta in the biaxial states considered; (b) finite deformation analyses by the finite element method and numerical integration solution reveal that significant tangential stress gradients are present in arteries commonly assumed to be “thin-walled” tubes using linear theory.


2002 ◽  
Vol 124 (4) ◽  
pp. 403-410 ◽  
Author(s):  
J. Lau ◽  
Z. Mei ◽  
S. Pang ◽  
C. Amsden ◽  
J. Rayner ◽  
...  

Thermal reliability of the solder sealing ring of Agilent Technologies’ bubble-actuated photonic cross-connect switches has been investigated in this paper. Emphasis is placed on the determination of the thermal-fatigue life of the solder sealing ring under shipping/storing/handling conditions. The solder ring is assumed to obey the Garofalo-Arrhenius creep constitutive law. The nonlinear responses such as the deflections, stresses, creep strains, and creep strain energy density of the 3-D photonic package have been determined with a commercial finite element code. In addition, isothermal fatigue tests have been performed to obtain the relationship between the number of cycle-to-failure and the strain energy density. Thus, by combining the finite element results and the isothermal fatigue test results, the average thermal-fatigue life of the solder sealing ring is readily determined and is found to be more than adequate for shipping/storing/handling the photonic switches.


Sign in / Sign up

Export Citation Format

Share Document