Corrected fluorescence excitation spectra of fulvic acids. Comparison with the UV/visible absorption spectra

1987 ◽  
Vol 62 ◽  
pp. 157-161 ◽  
Author(s):  
O.F.X. Donard ◽  
C. Belin ◽  
M. Ewald
2020 ◽  
Vol 8 ◽  
Author(s):  
Jeffrey R. Reimers ◽  
Margus Rätsep ◽  
Arvi Freiberg

Significant asymmetry found between the high-resolution Qy emission and absorption spectra of chlorophyll-a is herein explained, providing basic information needed to understand photosynthetic exciton transport and photochemical reactions. The Qy spectral asymmetry in chlorophyll has previously been masked by interference in absorption from the nearby Qx transition, but this effect has recently been removed using extensive quantum spectral simulations or else by analytical inversion of absorption and magnetic circular dichroism data, allowing high-resolution absorption information to be accurately determined from fluorescence-excitation spectra. To compliment this, here, we measure and thoroughly analyze the high-resolution differential fluorescence line narrowing spectra of chlorophyll-a in trimethylamine and in 1-propanol. The results show that vibrational frequencies often change little between absorption and emission, yet large changes in line intensities are found, this effect also being strongly solvent dependent. Among other effects, the analysis in terms of four basic patterns of Duschinsky-rotation matrix elements, obtained using CAM-B3LYP calculations, predicts that a chlorophyll-a molecule excited into a specific vibrational level, may, without phase loss or energy relaxation, reemit the light over a spectral bandwidth exceeding 1,000 cm−1 (0.13 eV) to influence exciton-transport dynamics.


1999 ◽  
Vol 103 (41) ◽  
pp. 8207-8212 ◽  
Author(s):  
Chuji Wang ◽  
Liat G. Shemesh ◽  
Wei Deng ◽  
Michael D. Lilien ◽  
Theodore S. Dibble

2018 ◽  
Vol 73 (3) ◽  
pp. 304-312 ◽  
Author(s):  
Stefan T. Faulkner ◽  
Cameron M. Rekully ◽  
Eric M. Lachenmyer ◽  
Ergun Kara ◽  
Tammi L. Richardson ◽  
...  

Phytoplankton play a vital role as primary producers in aquatic ecosystems. One common approach to classifying phytoplankton is fluorescence excitation spectroscopy, which leverages the variation in types and concentrations of pigments among different phytoplankton taxonomic groups. Here, we used a fluorescence imaging photometer to measure excitation ratios (“signatures”) of single cells and bulk cultures of seven differently pigmented phytoplankton species as they progressed from nitrogen N-replete to N-depleted conditions. Our objective was to determine whether N depletion alters the fluorescence excitation signature of each species and, if so, how quickly they recover when N (as nitrate) was resupplied, because these factors affect our ability to classify the species correctly. Of the seven species studied, only Proteomonas sulcata, a marine cryptophyte, showed measurable changes in single-cell fluorescence excitation ratios and bulk fluorescence excitation spectra. These changes were likely due to decreases in the cellular concentration of phycoerythrin, a N-rich pigment, as N became scarce. Within 3 h of resupply of N, fluorescence signatures began returning to pre-depletion values and were indistinguishable from N-replete cells by 80 h after resupply. These data suggest that our classification approach is robust for non-PE containing phytoplankton. PE-containing phytoplankton might exhibit systematic changes in their signatures depending on their level of N depletion, but this could be detected and the phytoplankton re-classified following a few hours of incubation in N replete conditions.


1971 ◽  
Vol 24 (9) ◽  
pp. 1797 ◽  
Author(s):  
RJ McDonald ◽  
BK Selinger

Exciplexes may be formed by exciting either partner of a given electron donor-acceptor pair. As the formation of such exciplexes is reversible, dissociation may lead to excitation energy transfer. ��� The temperature dependence of fluorescence excitation spectra has proved to be a powerful tool for exploring these systems.


2019 ◽  
Vol 220 ◽  
pp. 03003
Author(s):  
Aleksandr Starukhin ◽  
Vladimir Apyari ◽  
Aleksander Gorski ◽  
Andrei Ramanenka ◽  
Aleksei Furletov

A method of creation of aqueous solutions with silver nanoparticles for studying of fluorescence of hydrophobic compounds has been proposed for metallocomplexes of phthalocyanines. The effect of silver nanoparticles on the fluorescence of phthalocyanines metallocomplexes at room and low temperatures was studied. The addition of silver nanoparticles leads to plasmonic enhancement of signals in fluorescence and fluorescence excitation spectra of the compounds of interest from 1,5 to more than 7 times. The lifetimes and quantum yield of fluorescence were measured for solutions of metallophthalocyanines in binary mixtures and in binary mixtures with the addition of silver triangular nanoplates with shells of silicon dioxide.


Sign in / Sign up

Export Citation Format

Share Document