Mechanisms for gene conversion and homologous recombination: The double-strand break repair model and the successive half crossing-over model

1992 ◽  
Vol 28 ◽  
pp. 160 ◽  
Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 249-258
Author(s):  
Angela M Coveny ◽  
Tammy Dray ◽  
Gregory B Gloor

Abstract We examined the influence that heterologous sequences of different sizes have on the frequency of double-strand-break repair by gene conversion in Drosophila melanogaster. We induced a double-strand break on one X chromosome in female flies by P-element excision. These flies contained heterologous insertions of various sizes located 238 bp from the break site in cis or in trans to the break, or both. We observed a significant decrease in double-strand-break repair with large heterologous insertions located either in cis or in trans to the break. Reestablishing the homology by including the same heterologous sequence in cis and in trans to the double-strand break restored the frequency of gene conversion to wild-type levels. In one instance, an allelic nonhomologous insertion completely abolished repair by homologous recombination. The results show that the repair of a double-strand break by gene conversion requires chromosome pairing in the local region of the double-strand break.


2005 ◽  
Vol 86 (3) ◽  
pp. 185-191 ◽  
Author(s):  
PETTER PORTIN

The effect was investigated of the hypomorphic DNA double-strand break repair, notably synthesis-dependent strand annealing, deficient mutation mus309 on the third chromosome of Drosophila melanogaster on intergenic and intragenic meiotic recombination in the X chromosome. The results showed that the mutation significantly increases the frequency of intergenic crossing over in two of three gene intervals of the X chromosome studied. Interestingly the increase was most prevalent in the tip of the X chromosome where crossovers normally are least frequent per physical map unit length. In particular crossing over interference was also affected, indicating that the effect of the mus309 mutation involves preconditions of crossing over but not the event of crossing over itself. On the other hand, the results also show that most probably the mutation does not have any effect on intragenic recombination, i.e. gene conversion. These results are fully consistent with the present molecular models of meiotic crossing over initiated by double-strand breaks of DNA followed by formation of a single-end-invasion intermediate, or D-loop, which is subsequently processed to generate either crossover or non-crossover products involving formation of a double Holliday junction. In particular the results suggest that the mus309 gene is involved in resolution of the D-loop, thereby affecting the choice between double-strand-break repair (DSBR) and synthesis-dependent strand annealing (SDSA) pathways of meiotic recombination.


Sign in / Sign up

Export Citation Format

Share Document