Lipid composition and lateral diffusion in plasma membranes of teratocarcinoma-derived cell lines

Cell ◽  
1981 ◽  
Vol 24 (2) ◽  
pp. 511-517 ◽  
Author(s):  
David B. Searls ◽  
Michael Edidin
GigaScience ◽  
2019 ◽  
Vol 8 (6) ◽  
Author(s):  
Martijn R Molenaar ◽  
Aike Jeucken ◽  
Tsjerk A Wassenaar ◽  
Chris H A van de Lest ◽  
Jos F Brouwers ◽  
...  

Abstract Background A major challenge for lipidomic analyses is the handling of the large amounts of data and the translation of results to interpret the involvement of lipids in biological systems. Results We built a new lipid ontology (LION) that associates >50,000 lipid species to biophysical, chemical, and cell biological features. By making use of enrichment algorithms, we used LION to develop a web-based interface (LION/web, www.lipidontology.com) that allows identification of lipid-associated terms in lipidomes. LION/web was validated by analyzing a lipidomic dataset derived from well-characterized sub-cellular fractions of RAW 264.7 macrophages. Comparison of isolated plasma membranes with the microsomal fraction showed a significant enrichment of relevant LION-terms including “plasma membrane", “headgroup with negative charge", "glycerophosphoserines", “above average bilayer thickness", and “below average lateral diffusion". A second validation was performed by analyzing the membrane fluidity of Chinese hamster ovary cells incubated with arachidonic acid. An increase in membrane fluidity was observed both experimentally by using pyrene decanoic acid and by using LION/web, showing significant enrichment of terms associated with high membrane fluidity ("above average", "very high", and "high lateral diffusion" and "below average transition temperature"). Conclusions The results demonstrate the functionality of LION/web, which is freely accessible in a platform-independent way.


1985 ◽  
Vol 812 (1) ◽  
pp. 223-233 ◽  
Author(s):  
Balu R. Chakravarthy ◽  
Matthew W. Spence ◽  
Joe T.R. Clarke ◽  
Harold W. Cook

2018 ◽  
Vol 5 (4) ◽  
pp. 103
Author(s):  
Gary Thompson ◽  
Hope Beier ◽  
Bennett Ibey

Above a threshold electric field strength, 600 ns-duration pulsed electric field (nsPEF) exposure substantially porates and permeabilizes cellular plasma membranes in aqueous solution to many small ions. Repetitive exposures increase permeabilization to calcium ions (Ca2+) in a dosage-dependent manner. Such exposure conditions can create relatively long-lived pores that reseal after passive lateral diffusion of lipids should have closed the pores. One explanation for eventual pore resealing is active membrane repair, and an ubiquitous repair mechanism in mammalian cells is lysosome exocytosis. A previous study shows that intracellular lysosome movement halts upon a 16.2 kV/cm, 600-ns PEF exposure of a single train of 20 pulses at 5 Hz. In that study, lysosome stagnation qualitatively correlates with the presence of Ca2+ in the extracellular solution and with microtubule collapse. The present study tests the hypothesis that limitation of nsPEF-induced Ca2+ influx and colloid osmotic cell swelling permits unabated lysosome translocation in exposed cells. The results indicate that the efforts used herein to preclude Ca2+ influx and colloid osmotic swelling following nsPEF exposure did not prevent attenuation of lysosome translocation. Intracellular lysosome movement is inhibited by nsPEF exposure(s) in the presence of PEG 300-containing solution or by 20 pulses of nsPEF in the presence of extracellular calcium. The only cases with no significant decreases in lysosome movement are the sham and exposure to a single nsPEF in Ca2+-free solution.


1993 ◽  
Vol 87 (4) ◽  
pp. 508-514 ◽  
Author(s):  
Flavia Navari-Izzo ◽  
Mike Frank Quartacci ◽  
Donato Melfi ◽  
Riccardo Izzo

Sign in / Sign up

Export Citation Format

Share Document