In vitro culture of bovine IVM-IVF embryos: Cooperative interaction among embryos and the role of growth factors

1994 ◽  
Vol 41 (6) ◽  
pp. 1323-1331 ◽  
Author(s):  
C.L. Keefer ◽  
S.L. Stice ◽  
A.M. Paprocki ◽  
P. Golueke
2021 ◽  
Vol 120 (3) ◽  
pp. 979-991
Author(s):  
Rebekah B. Stuart ◽  
Suzanne Zwaanswijk ◽  
Neil D. MacKintosh ◽  
Boontarikaan Witikornkul ◽  
Peter M. Brophy ◽  
...  

AbstractFasciola hepatica (liver fluke), a significant threat to food security, causes global economic loss for the livestock industry and is re-emerging as a foodborne disease of humans. In the absence of vaccines, treatment control is by anthelmintics; with only triclabendazole (TCBZ) currently effective against all stages of F. hepatica in livestock and humans. There is widespread resistance to TCBZ and its detoxification by flukes might contribute to the mechanism. However, there is limited phase I capacity in adult parasitic helminths with the phase II detoxification system dominated by the soluble glutathione transferase (GST) superfamily. Previous proteomic studies have demonstrated that the levels of Mu class GST from pooled F. hepatica parasites respond under TCBZ-sulphoxide (TCBZ-SO) challenge during in vitro culture ex-host. We have extended this finding by exploiting a sub-proteomic lead strategy to measure the change in the total soluble GST profile (GST-ome) of individual TCBZ-susceptible F. hepatica on TCBZ-SO-exposure in vitro culture. TCBZ-SO exposure demonstrated differential abundance of FhGST-Mu29 and FhGST-Mu26 following affinity purification using both GSH and S-hexyl GSH affinity. Furthermore, a low or weak affinity matrix interacting Mu class GST (FhGST-Mu5) has been identified and recombinantly expressed and represents a new low-affinity Mu class GST. Low-affinity GST isoforms within the GST-ome was not restricted to FhGST-Mu5 with a second likely low-affinity sigma class GST (FhGST-S2) uncovered. This study represents the most complete Fasciola GST-ome generated to date and has supported the potential of subproteomic analyses on individual adult flukes.


2015 ◽  
Vol 19 (4) ◽  
pp. 372
Author(s):  
E. Yu. Brusentsev ◽  
T. N. Igonina ◽  
I. N. Rozhkova ◽  
D. S. Ragaeva ◽  
S. Ya. Amstislavsky

2018 ◽  
Vol 44 (1) ◽  
pp. 15
Author(s):  
Livia Brunetti Apolloni ◽  
Jamily Bezerra Bruno ◽  
Benner Geraldo Alves ◽  
José Ricardo de Figueiredo

Introduction: Steroid hormones production is a physiological process termed steroidogenesis. An important stage of this process is the conversion of androgens into estrogens through aromatase enzyme. Furthermore, androgens are important in the process of folliculogenesis, promoting follicular growth in different species. Thus, the aim of this review was to present the process of synthesis, mechanism of action, and importance of androgens in folliculogenesis. Additionally, the main results of in vitro culture of ovarian cells in the presence of these hormones were emphasized.Review: Folliculogenesis begins in prenatal life in most of species and can be defined as the process of formation, follicular growth, and oocyte maturation. Preantral follicles represent 95% of the follicular population and assisted reproductive technologies have been developed (e.g., Manipulation of Oocytes Enclosed in Preantral Follicles - MOEPF) in order to avoid the great follicle loss that occurs naturally in vivo by atresia. The MOEPF aim to obtain a large number of competent oocytes from preantral follicles and then subject to in vitro maturation, fertilization, and culture for embryo production. However, the development of an efficient medium to ensure the follicular survival and oocyte maturation is the major challenge of this biotechnology. To achieve the success on in vitro culture, the effects of substances as androgens on follicular development have been evaluated. Androgens are steroid hormones produced in theca cells (TC) that are fundamental for follicular growth. These cells provide all the androgens required by the developing follicles for conversion into estrogens by the granulosa cells (GC). Androgens receptors (AR) are localized in cell cytoplasm of all follicular categories, being more expressed in preantral follicles. The androgen pathway initiates through its connection to its receptor, making a complex androgen-AR, that in the nucleus helps on the process of gene transcription related with follicular survival. This mechanism is androgen receptor genomic activity. In addition to genomic action, there is an androgen receptor non-genomic activity. This occurs through activation of AR and its interaction with different signaling molecules located on the cell membrane, triggering events that aid in the follicular development. Regardless of the androgens actions, ovarian cells of several species subjected to in vitro culture have shown the importance of these hormones on the follicle development. Recent studies demonstrated that androgens addition on the culture medium stimulated the activation of preantral follicles (bovine and caprine), antrum formation (swine), survival (non-primate), and oocyte maturation (antral follicles; bovine). Also, some studies suggest that the addition of these hormones on in vitro culture is dose-dependent and species-specific.Conclusion: This review shows the role of androgens in different stages of follicular development and its action as a substrate for steroidogenesis and transcription of genes related to follicular survival and oocyte maturation. However, when these hormones should be added during in vitro follicular culture and which concentration is required remains unclear, being necessary more studies to elucidate these aspects.


2020 ◽  
Vol 35 (12) ◽  
pp. 2793-2807
Author(s):  
P Asiabi ◽  
M M Dolmans ◽  
J Ambroise ◽  
A Camboni ◽  
C A Amorim

Abstract STUDY QUESTION Can human theca cells (TCs) be differentiated in vitro? SUMMARY ANSWER It is possible to differentiate human TCs in vitro using a medium supplemented with growth factors and hormones. WHAT IS KNOWN ALREADY There are very few studies on the origin of TCs in mammalian ovaries. Precursor TCs have been described in neonatal mice ovaries, which can differentiate into TCs under the influence of factors from oocytes and granulosa cells (GCs). On the other hand, studies in large animal models have reported that stromal cells (SCs) isolated from the cortical ovarian layer can also differentiate into TCs. STUDY DESIGN, SIZE, DURATION After obtaining informed consent, ovarian biopsies were taken from eight menopausal women (53–74 years of age) undergoing laparoscopic surgery for gynecologic disease not related to the ovaries. SCs were isolated from the ovarian cortex and in vitro cultured for 8 days in basic medium (BM) (G1), enriched with growth factors, FSH and LH in plastic (G2) or collagen substrate without (G3) or with (G4) a GC line. PARTICIPANTS/MATERIALS, SETTING, METHODS To confirm TC differentiation, relative mRNA levels for LH receptor (Lhr), steroidogenic acute regulatory protein (Star), cholesterol side-chain cleavage enzyme (Cyp11a1), cytochrome P450 17A1 (Cyp17a1), hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (Hsd3b1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2 (Hsd3b2) were assessed. Immunohistochemistry was also performed for their protein detection and a specific marker was identified for TCs (aminopeptidase-N, CD13), as were markers for theca and small luteal cells (dipeptidyl peptidase IV (CD26) and Notch homolog 1, translocation-associated (NOTCH1)). Finally, we analyzed cell ultrastructure before (Day 0) and after in vitro culture (Day 8), and dehydroepiandrosterone (DHEA) and progesterone levels in the medium using transmission electron microscopy (TEM) and ELISA, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Results obtained from qPCR showed a significant increase (P < 0.05) in mRNA levels of Lhr in F2 (floating cells in G2) and G4, Cyp17a1 in G1 and F1 (floating cells in G1) and Hsd3b2 in G1, G2, G3 and G4. Immunohistochemistry confirmed expression of each enzyme involved in the steroidogenic pathway at the protein stage. However, apart from G1, all other groups exhibited a significant (P < 0.05) rise in the number of CD13-positive cells. There was also a significant increase (P < 0.05) in NOTCH1-positive cells in G3 and G4. Ultrastructure analyses by TEM showed a distinct difference between groups and also versus Day 0. A linear trend with time revealed a significant gain (q < 0.001) in DHEA concentrations in the medium during the culture period in G1, G2, G3 and G4. It also demonstrated a statistical increase (q < 0.001) in G2, G3 and G4 groups, but G1 remained the same throughout culture in terms of progesterone levels. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION Shorter periods of in vitro culture (e.g. 2, 4 and 6 days) could have led to increased concentrations of differentiated TCs in G2, G3 and G4. In addition, a group of cells cultured in BM and accompanied by COV434 cells would be necessary to understand their role in the differentiation process. Finally, while our results demonstrate that TCs can be differentiated in vitro from cells isolated from the cortical layer of postmenopausal ovaries, we do not know if these cells are differentiated from a subpopulation of precursor TCs present in ovarian cortex or ovarian SCs in general. It is therefore necessary to identify specific markers for precursor TCs in human ovaries to understand the origin of these cells. WIDER IMPLICATIONS OF THE FINDINGS This is a promising step toward understanding TC ontogenesis in the human ovary. Moreover, in vitro-generated human TCs can be used for studies on drug screening, as well as to understand TC-associated pathologies, such as androgen-secreting tumors and polycystic ovary syndrome. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS) (C.A.A. is an FRS-FNRS Research Associate; grant MIS #F4535 16 awarded to C.A.A.; grant 5/4/150/5 awarded to M.M.D.; grant ASP-RE314 awarded to P.A.) and Foundation Against Cancer (grant 2018-042 awarded to A.C.). The authors declare no competing interests.


2005 ◽  
Vol 11 (17) ◽  
pp. 6291-6299 ◽  
Author(s):  
Ramin Tehranchi ◽  
Bengt Fadeel ◽  
Jan Schmidt-Mende ◽  
Ann-Mari Forsblom ◽  
Emma Emanuelsson ◽  
...  

1984 ◽  
Vol 121 (1) ◽  
pp. 215-225 ◽  
Author(s):  
Jamson S. Lwebuga-Mukasa ◽  
Gunilla Thulin ◽  
Joseph A. Madri ◽  
Carolyn Barrett ◽  
Joseph B. Warshaw

Author(s):  
Gabriela Maria VICAȘ ◽  
Mircea SAVATTI

Establishing the effect of the amino acids as additional additives to the culture medium is and will be in the future one of our concerns of interest for the in vitro culture of some plants. The present study examines the effect of the glicocol added to the LS basal medium over the embryos of the Trifolium pratense L specie cultivated in vitro. There were followed: the percentage of plant regeneration of the red clover, its multiplication capacity and the formation of the root system, and also the evolution of the callus obtained on mediums with 2,4D, BA and amino acid.


Sign in / Sign up

Export Citation Format

Share Document