Cumulative efficiency of biopsy, vitrification and in straw dilution in a bovine in vitro embryo production system

1996 ◽  
Vol 45 (1) ◽  
pp. 162 ◽  
Author(s):  
G. Vajta ◽  
P. Holm ◽  
T. Greve ◽  
H. Callesen
1993 ◽  
Vol 132 (26) ◽  
pp. 660-660 ◽  
Author(s):  
B. Avery ◽  
T. Greve ◽  
L. Ronsholt ◽  
A. Botner

2009 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
I. G. F. Goovaerts ◽  
J. L. M. R. Leroy ◽  
J. B. P. De Clercq ◽  
S. Andries ◽  
P. E. J. Bols

An in vitro embryo production system (IVP), in which a single oocyte can be tracked from the moment of retrieval up to the blastocyst stage, would be a valuable tool for studies linking developmental competence and embryo metabolism to oocyte quality and follicular environment. Unfortunately, to date, data on individual IVP are inconsistent, and in most cases show unsatisfactory blastocyst rates. Earlier studies revealed that individual culture on a cumulus cell (CC) monolayer resulted in comparable numbers of good-quality embryos as obtained after regular group culture (Goovaerts et al. 2008 Reprod. Dom. Anim. 43 (Suppl. 3), 190). Because, in the latter study, single culture was performed after group maturation and fertilization, the aim of this study was to develop and test an individual IVP system using bovine oocytes or zygotes obtained after single maturation and single fertilization. Therefore, 532 grade I COC from slaughterhouse ovaries (3 replicates) were randomly assigned to 1 of 2 treatments: a complete individual IVP protocol, or a routine group IVP as a control. Individual maturation (TCM-199 + 20% serum) and fertilization were performed in 20-μL droplets under oil in 24-well plates. Subsequently, each zygote was cultured in 20 μL of medium (SOF + 5% serum, 90% N2, 5% CO2, 5% O2) on a 6-day-old monolayer of matured CC (5% CO2 in air). Group maturation and fertilization were carried out per 100 COC in 500 μL, whereas group culture was performed per 25 zygotes in 50-μL droplets under oil. Cleavage, blastocyst, and hatching rates were assessed 2, 8, and 10 days postfertilization, respectively. Possible effects of individual and group culture were evaluated with binary logistic regression (SPSS 15.0). No interactions between replicate and treatment could be found (P > 0.05). Cleavage and blastocyst rates were significantly lower after individual IVP, compared with group IVP, whereas the blastocyst rates on cleaved zygotes and the hatching rates did not differ significantly (Table 1). In conclusion, acceptable blastocyst rates (25.1%) could be obtained after individual IVP. The lower blastocyst rates were associated with the lower cleavage rates, and no effect of the individual embryo culture system on embryo development could be found. Table 1.Cleavage, blastocyst, and hatching rates after individual and group in vitro embryo production (IVP)


2014 ◽  
Author(s):  
Serrano Andres Felipe Gonzalez ◽  
Christina R Ferreira ◽  
Valentina Pirro ◽  
Andrea Lucas-Hahn ◽  
Julia Heinzmann ◽  
...  

2003 ◽  
Vol 75 (1-2) ◽  
pp. 9-26 ◽  
Author(s):  
Lee H.A Morris ◽  
Adrienne E Randall ◽  
W.A King ◽  
W.H Johnson ◽  
B.C Buckrell

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 216
Author(s):  
Hernan Baldassarre

The potential of laparoscopic ovum pick-up (LOPU) followed by in vitro embryo production (IVEP) as a tool for accelerated genetic programs in ruminants is reviewed in this article. In sheep and goats, the LOPU-IVEP platform offers the possibility of producing more offspring from elite females, as the procedure is minimally invasive and can be repeated more times and more frequently in the same animals compared with conventional surgical embryo recovery. On average, ~10 and ~14 viable oocytes are recovered by LOPU from sheep and goats, respectively, which results in 3–5 transferable embryos and >50% pregnancy rate after transfer. LOPU-IVEP has also been applied to prepubertal ruminants of 2–6 months of age, including bovine and buffalo calves. In dairy cattle, the technology has gained momentum in the past few years stemming from the development of genetic marker selection that has allowed predicting the production phenotype of dairy females from shortly after birth. In Holstein calves, we obtained an average of ~22 viable oocytes and ~20% transferable blastocyst rate, followed by >50% pregnancy rate after transfer, declaring the platform ready for commercial application. The present and future of this technology are discussed with a focus on improvements and research needed.


2012 ◽  
Vol 32 (7) ◽  
pp. 409 ◽  
Author(s):  
C. Herrera ◽  
P. Dufourq ◽  
M. Freije ◽  
I. Morikawa ◽  
J.E. Centeno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document