Vitrification of porcine early cleavage stage embryos and oocytes after removal of cytoplasmic lipid droplets

1996 ◽  
Vol 45 (1) ◽  
pp. 180 ◽  
Author(s):  
H. Nagashima ◽  
M. Kuwayama ◽  
C.G. Grupen ◽  
R.J. Ashman ◽  
M.B. Nottle
1995 ◽  
Vol 43 (1) ◽  
pp. 285 ◽  
Author(s):  
H. Nagashima ◽  
N. Kashiwazaki ◽  
R.J. Ashman ◽  
M.B. Nottle

1971 ◽  
Vol 26 (8) ◽  
pp. 816-821 ◽  
Author(s):  
Larry E. Bockstahler

Incorporation of uridine in cleavage stage eggs of the sea urchin Paracentrotus lividus was investigated. It was shown by ion exchange and thin layer chromatography that most of the uridine taken up during the 16-cell stage was converted into UTP with some incorporation into UDP and UMP. Conversion of uridine to these phosphorylated nucleosides occurred throughout early cleavage stages. A very small amount of uridine taken up by cleavage stage eggs is incorporated into RNA heterogeneous in size. This RNA was examined by polyacrylamide gel electrophoresis.


2000 ◽  
Vol 8 (3) ◽  
pp. 241-287 ◽  
Author(s):  
GM Jones

The transfer of a blastocyst established the first human clinical pregnancy following in vitro fertilization (IVF). Nine years later Cohen et al. reported pregnancies resulting from the transfer of cryopreserved human blastocysts. However, it was another six years before the first report of births resulting from the transfer of human blastocysts produced in vitro appeared in the medical literature. In the intervening period clinics have opted to transfer embryos at the early cleavage stage to the uterus, despite the fact that in vivo the embryo does not enter the uterus until two to three days later at the morula to blastocyst stage of development. The viability and potential for implantation of blastocysts is high, as indicated by the finding that more than 60% of in-vivo-derived blastocysts, recovered by uterine lavage following artificial insemination of fertile donors, implant and develop into viable fetuses when transferred to recipients. This is in stark contrast to the 10–20% of in-vitro-produced embryos transferred at the early cleavage stage of development that result in a live-birth. This reduction in viability following transfer of in-vitro-derived early cleavage stage embryos may have several possible explanations: (1) a failure of implantation due to poor synchronization between the embryo and the uterine endometrium; (2) a hostile environment in the uterus for early cleavage stage embryos; (3) sub-optimal in vitro culture conditions which result in a reduction in embryo viability; (4) the assumption that all oocytes retrieved in an IVF cycle have an equal ability to develop into viable embryos; and (5) the failure to identify the most viable embryo in a cohort. Certainly, improving culture conditions and laboratory techniques for developing high quality blastocysts routinely in vitro will not only address many of the above questions but will also improve the quality and viability of earlier stages of embryo development.


2003 ◽  
Vol 80 ◽  
pp. 166 ◽  
Author(s):  
Alan Dudkiewicz ◽  
Erik Poole ◽  
Marilyn Novotny ◽  
Jian-Jun Zhu ◽  
Helen Kim ◽  
...  

Author(s):  
D.H Edgar ◽  
J Archer ◽  
D.A Gook ◽  
H Jericho ◽  
L Wilton ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
In-Sul Hwang ◽  
Shinichi Hochi

Principle of oocyte cryoinjury is first overviewed and then research history of cryopreservation using bovine oocytes is summarized for the last two decades with a few special references to recent progresses. Various types of cryodevices have been developed to accelerate the cooling rate and applied to the oocytes from large domestic species enriched with cytoplasmic lipid droplets. Two recent approaches include the qualitative improvement of IVM oocytes prior to the vitrification and the short-term recovery culture of vitrified-warmed oocytes prior to the subsequent IVF. Supplementation of L-carnitine to IVM medium of bovine oocytes has been reported to reduce the amount of cytoplasmic lipid droplets and improve the cryotolerance of the oocytes, but it is still controversial whether the positive effect of L-carnitine is reproducible. Incidence of multiple aster formation, a possible cause for low developmental potential of vitrified-warmed bovine oocytes, was inhibited by a short-term culture of the postwarm oocytes in the presence of Rho-associated coiled-coil kinase (ROCK) inhibitor. Use of an antioxidantα-tocopherol, instead of the ROCK inhibitor, also supported the revivability of the postwarm bovine oocytes. Further improvements of the vitrification procedure, combined with pre- and postvitrification chemical treatment, would overcome the high sensitivity of bovine oocytes to cryopreservation.


Development ◽  
1975 ◽  
Vol 33 (3) ◽  
pp. 697-713
Author(s):  
Mary Nadijcka ◽  
Nina Hillman

The phenocritical period of the t6/t6 genome extends from the late blastocyst substages through the elongated egg-cylinder stage, whereas the lethal period begins at the short egg-cylinder-stage and extends through the elongated egg-cylinder stage. Most of the homozygous mouse embryos die during the short egg-cylinder stage. The viable egg-cylinder-staged t6/t6 embryos can be distinguished from their phenotypically wild-type litter-mates at both the light and electron microscopic levels. The distinguishing characteristics of these embryos are aberrantly arranged entodermal cells, excessive cytoplasmic lipid and crystal-containing mitochondria. These same features are also characteristic of those mutant embryos which are developmentally arrested at both the short and elongated egg-cylinder stages. Over 50% of the t6/t6 embryos can be identified as early as the late blastocyst substages by the presence of large, electron-dense cytoplasmic lipid droplets.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tiffany Guerenne-Del Ben ◽  
Vincent Couderc ◽  
Ludovic Duponchel ◽  
Vincent Sol ◽  
Philippe Leproux ◽  
...  

Abstract For many years, scientists have been looking for specific biomarkers associated with cancer cells for diagnosis purposes. These biomarkers mainly consist of proteins located at the cell surface (e.g. the TrkB receptor) whose activation is associated with specific metabolic modifications. Identification of these metabolic changes usually requires cell fixation and specific dye staining. MCARS microspectroscopy is a label-free, non-toxic, and minimally invasive method allowing to perform analyses of live cells and tissues. We used this method to follow the formation of lipid droplets in three colorectal cancer cell lines expressing TrkB. MCARS images of cells generated from signal integration of CH2 stretching modes allow to discriminate between lipid accumulation in the endoplasmic reticulum and the formation of cytoplasmic lipid droplets. We found that the number of the latter was related to the TrkB expression level. This result was confirmed thanks to the creation of a HEK cell line which over-expresses TrkB. We demonstrated that BDNF-induced TrkB activation leads to the formation of cytoplasmic lipid droplets, which can be abolished by K252a, an inhibitor of TrkB. So, MCARS microspectroscopy proved useful in characterizing cancer cells displaying an aberrant lipid metabolism.


Sign in / Sign up

Export Citation Format

Share Document