scholarly journals Large convex sets in oriented matroids

1988 ◽  
Vol 45 (3) ◽  
pp. 293-304 ◽  
Author(s):  
J.Richard Buchi ◽  
William E Fenton
Author(s):  
J. Richard Buchi ◽  
William E. Fenton

10.37236/7582 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Bryan R. Gillespie

In 1980, Las Vergnas defined a notion of discrete convexity for oriented matroids, which Edelman subsequently related to the theory of anti-exchange closure functions and convex geometries. In this paper, we use generalized matroid activity to construct a convex geometry associated with an ordered, unoriented matroid. The construction in particular yields a new type of representability for an ordered matroid defined by the affine representability of its corresponding convex geometry. The lattice of convex sets of this convex geometry induces an ordering on the matroid independent sets which extends the external active order on matroid bases. We show that this generalized external order forms a supersolvable meet-distributive lattice refining the geometric lattice of flats, and we uniquely characterize the lattices isomorphic to the external order of a matroid. Finally, we introduce a new trivariate generating function generalizing the matroid Tutte polynomial.


Author(s):  
Neng-Yu Zhang ◽  
Bruce F. McEwen ◽  
Joachim Frank

Reconstructions of asymmetric objects computed by electron tomography are distorted due to the absence of information, usually in an angular range from 60 to 90°, which produces a “missing wedge” in Fourier space. These distortions often interfere with the interpretation of results and thus limit biological ultrastructural information which can be obtained. We have attempted to use the Method of Projections Onto Convex Sets (POCS) for restoring the missing information. In POCS, use is made of the fact that known constraints such as positivity, spatial boundedness or an upper energy bound define convex sets in function space. Enforcement of such constraints takes place by iterating a sequence of function-space projections, starting from the original reconstruction, onto the convex sets, until a function in the intersection of all sets is found. First applications of this technique in the field of electron microscopy have been promising.To test POCS on experimental data, we have artificially reduced the range of an existing projection set of a selectively stained Golgi apparatus from ±60° to ±50°, and computed the reconstruction from the reduced set (51 projections). The specimen was prepared from a bull frog spinal ganglion as described by Lindsey and Ellisman and imaged in the high-voltage electron microscope.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter presents some results about groups generated by reflections and the standard metric on a Bruhat-Tits building. It begins with definitions relating to an affine subspace, an affine hyperplane, an affine span, an affine map, and an affine transformation. It then considers a notation stating that the convex closure of a subset a of X is the intersection of all convex sets containing a and another notation that denotes by AGL(X) the group of all affine transformations of X and by Trans(X) the set of all translations of X. It also describes Euclidean spaces and assumes that the real vector space X is of finite dimension n and that d is a Euclidean metric on X. Finally, it discusses Euclidean representations and the standard metric.


Author(s):  
Paolo Dulio ◽  
Andrea Frosini ◽  
Simone Rinaldi ◽  
Lama Tarsissi ◽  
Laurent Vuillon

AbstractA remarkable family of discrete sets which has recently attracted the attention of the discrete geometry community is the family of convex polyominoes, that are the discrete counterpart of Euclidean convex sets, and combine the constraints of convexity and connectedness. In this paper we study the problem of their reconstruction from orthogonal projections, relying on the approach defined by Barcucci et al. (Theor Comput Sci 155(2):321–347, 1996). In particular, during the reconstruction process it may be necessary to expand a convex subset of the interior part of the polyomino, say the polyomino kernel, by adding points at specific positions of its contour, without losing its convexity. To reach this goal we consider convexity in terms of certain combinatorial properties of the boundary word encoding the polyomino. So, we first show some conditions that allow us to extend the kernel maintaining the convexity. Then, we provide examples where the addition of one or two points causes a loss of convexity, which can be restored by adding other points, whose number and positions cannot be determined a priori.


Sign in / Sign up

Export Citation Format

Share Document