95/01355 Cold flow field and residence time distribution of a Texaco gasifier

1995 ◽  
Vol 36 (2) ◽  
pp. 95
Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1896
Author(s):  
Bolin Hu ◽  
Xiaoqiang Zhang ◽  
Zhaofeng Wang ◽  
Zixian Wang ◽  
Yuanfan Ji

This paper uses computational fluid dynamics (CFD) to simulate flow field distribution inside an electrochemical descaling reactor in three dimensions. First, the reactor flow field was obtained by steady-state simulation, and the grid independence was verified. Then, the steady state of the flow field was judged to ensure the accuracy of the simulation results. Transient simulations were performed on the basis of steady-state simulations, and residence time distribution (RTD) curves were obtained by a pulse-tracing method. The effects of plate height and plate spacing on reactor hydraulic characteristics (flow state and backmixing) were investigated using RTD curves, and the results showed that increasing the plate height and decreasing the plate spacing could make the flow more similar to the plug flow and reduce the degree of backmixing in the reactor. The flow field details provided by CFD were used to analyze the reactor flow field and were further verified to obtain the distribution patterns of dead and short circuit zones. Meanwhile, information regarding pressure drops was extracted for different working conditions (490, 560, and 630 mm for pole plate height and 172.6, 129.45, and 103.56 mm for pole plate spacing), and the results showed that increasing the pole plate height and decreasing the pole plate spacing led to an increased drop in pressure. In this case, a larger pressure drop means higher energy consumption. However, increasing the pole plate height had a smaller effect on energy consumption than decreasing the pole plate spacing.


2012 ◽  
Vol 605-607 ◽  
pp. 1311-1316
Author(s):  
Jian Jun Zhang ◽  
Wen Fang Gao ◽  
Zhu Gang Peng

The original scheme flow behavior of WISCO 60t two-strand tundish was investigated by means of hydraulic model. Optimized scheme was selected by flow field Character analyzing and residence time distribution (RTD) curves analyzing of each scheme. The results show that the dead volume Vd of optimized scheme decreases to 5.33%, reduced by 77.4% compared with the original scheme. The average residence time Ta of optimized scheme increases to 364.5s, increased by 70.5s compared with the original scheme. The optimized scheme favors more reasonable flow field and inclusions removing in the tundish. It is more adaptive than the original scheme for the tow-strand tundish.


2021 ◽  
Vol 32 (2) ◽  
pp. 611-618
Author(s):  
Atena Dehghani Kiadehi ◽  
Mikel Leturia ◽  
Franco Otaola ◽  
Aissa Ould-Dris ◽  
Khashayar Saleh

Sign in / Sign up

Export Citation Format

Share Document