Optimization of Residence Time Distribution in Small Water Treatment Systems

2019 ◽  
pp. 123-130
1999 ◽  
Vol 26 (2) ◽  
pp. 135-144 ◽  
Author(s):  
L E Liem ◽  
S J Stanley ◽  
Daniel W Smith

Sixteen full-scale tracer studies were completed at two water treatment plants to assess disinfection performance under the concentration-time (CT) concept. The step residence time distribution (F RTD) was developed for each case. The value of the effective contact time, t10, in the CT concept was then obtained. For reservoirs without baffles, the t10 values were found to be much smaller than the expected values, indicating poor performance under the CT concept. Several models were used to interpret the F RTD characteristics, but the results were unsatisfactory. The standard jet model was then applied and was able to match the field data F RTD curve up to the relative concentration c/co [Formula: see text] 0.2. This showed that the momentum causing jet was responsible for the rapid movement of water through the system causing small t10 values. The work shows the importance of the momentum causing jet in reservoirs, and that in addition to traditional criteria it should be considered in the evaluation of water treatment component design. Other models that are commonly used to predict the t10 value should be applied carefully as a result of this jet effect.Key words: tracer study, F RTD, t10, CT concept, jet, water treatment component design.


2021 ◽  
Vol 32 (2) ◽  
pp. 611-618
Author(s):  
Atena Dehghani Kiadehi ◽  
Mikel Leturia ◽  
Franco Otaola ◽  
Aissa Ould-Dris ◽  
Khashayar Saleh

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 430
Author(s):  
Changyou Ding ◽  
Hong Lei ◽  
Hong Niu ◽  
Han Zhang ◽  
Bin Yang ◽  
...  

The residence time distribution (RTD) curve is widely applied to describe the fluid flow in a tundish, different tracer mass concentrations and different tracer volumes give different residence time distribution curves for the same flow field. Thus, it is necessary to have a deep insight into the effects of the mass concentration and the volume of tracer solution on the residence time distribution curve. In order to describe the interaction between the tracer and the fluid, solute buoyancy is considered in the Navier–Stokes equation. Numerical results show that, with the increase of the mass concentration and the volume of the tracer, the shape of the residence time distribution curve changes from single flat peak to single sharp peak and then to double peaks. This change comes from the stratified flow of the tracer. Furthermore, the velocity difference number is introduced to demonstrate the importance of the density difference between the tracer and the fluid.


Sign in / Sign up

Export Citation Format

Share Document