The surface photo-oxidation of bisphenol A polysulphone films as studied by ESCA

1985 ◽  
Vol 11 (3) ◽  
pp. 211-224 ◽  
Author(s):  
H.S. Munro ◽  
D.T. Clark
Keyword(s):  
2016 ◽  
Vol 9 (2) ◽  
pp. 27-35 ◽  
Author(s):  
Rudy Abo ◽  
Nicolai-Alexeji Kummer ◽  
Broder J. Merkel

Abstract. Experiments on photodegradation of Bisphenol A (BPA) were carried out in water samples by means photocatalytic and photo-oxidation methods in the presence of ZnO, TiO2 and SnO2 catalysts. The objective of this study was to develop an improved technique that can be used as a remediation procedure for a BPA-contaminated surface water and groundwater based on the UV solar radiation. The photodegradation of BPA in water performed under a low-intensity UV source mimics the UVC and UVA spectrum of solar radiation between 254 and 365 nm. The archived results reveal higher degradation rates observed in the presence of ZnO than with TiO2 and SnO2 catalysts during 20 h of irradiation. The intervention of the advanced photocatalytic oxidation (PCO) reduces the time of degradation to less than 1 h to reach a degradation rate of 90 % for BPA in water. The study proposes the use of ZnO as a competitor catalyst to the traditional TiO2, providing the most effective treatment of contaminated water with phenolic products.


2016 ◽  
Author(s):  
Rudy Abo ◽  
Nicolai-Alexeji Kummer ◽  
Broder J. Merkel

Abstract. Experiments on photodegradation of Bisphenol A (BPA) was carried out in water samples by means photocatalytic and photo-oxidation methods in the presence of ZnO, TiO2 and SnO2 catalysts. The objective of this study was to develop an improved technique that can be used as remediation procedure for BPA contaminated surface and groundwater based on solar radiation. The photodegradation of BPA in water was performed under low-intensity UV mimics natural solar radiation. The results reveals significantly higher degradation rates observed in the presence of ZnO than with TiO2 and SnO2 catalysts during 20 h of irradiation. The intervention of the advanced photocatalytic oxidation (PCO) was reduced the time of degradation to less than 1 h to reach a degradation rate of 90 % for BPA in water. The results also suggests the use of ZnO as competitor catalyst to the traditional TiO2, providing most effective treatment of contaminated water with phenolic products.


Author(s):  
E. G. Rightor ◽  
G. P. Young

Investigation of neat polymers by TEM is often thwarted by their sensitivity to the incident electron beam, which also limits the usefulness of chemical and spectroscopic information available by electron energy loss spectroscopy (EELS) for these materials. However, parallel-detection EELS systems allow reduced radiation damage, due to their far greater efficiency, thereby promoting their use to obtain this information for polymers. This is evident in qualitative identification of beam sensitive components in polymer blends and detailed investigations of near-edge features of homopolymers.Spectra were obtained for a poly(bisphenol-A carbonate) (BPAC) blend containing poly(tetrafluoroethylene) (PTFE) using a parallel-EELS and a serial-EELS (Gatan 666, 607) for comparison. A series of homopolymers was also examined using parallel-EELS on a JEOL 2000FX TEM employing a LaB6 filament at 100 kV. Pure homopolymers were obtained from Scientific Polymer Products. The PTFE sample was commercial grade. Polymers were microtomed on a Reichert-Jung Ultracut E and placed on holey carbon grids.


2011 ◽  
pp. 053111130856
Author(s):  
Stephen Ritter
Keyword(s):  

2011 ◽  
pp. 062311292128
Author(s):  
Erika Gebel
Keyword(s):  

2018 ◽  
Vol 13 (1) ◽  
pp. 112-116 ◽  
Author(s):  
Yanling Hu ◽  
Chun Deng ◽  
Yu He ◽  
Yili Ge ◽  
Gongwu Song

Sign in / Sign up

Export Citation Format

Share Document