Low-cycle fatigue damage accumulation in Armco ironVasek, A. and Polak, J. Fatigue Fract. Eng. Mater. Struct. 1991 14 (2–3), 193–204

1991 ◽  
Vol 13 (4) ◽  
pp. 365-365
2017 ◽  
Vol 139 (7) ◽  
Author(s):  
M.-H. Herman Shen ◽  
Sajedur R. Akanda

An energy-based framework is developed for welded steel and AL6061-T6 for assessment of nonlinear evolution of fatigue damage accumulation along fatigue life. The framework involves interrogation at continuum using a newly developed experimental procedure to determine the cyclic damaging energy to reveal that the accumulated fatigue damage evolves nonlinearly along cycle in case of low cycle fatigue but has somewhat linear relationship with cycle in case of high cycle fatigue. The accumulated fatigue damage is defined as the ratio of the accumulated cyclic damaging energy to the fatigue toughness, a material property and hence remains the same at all applied stress ranges. Based on the experimental data, a model is developed in order to predict cyclic damaging energy history at any applied stress range. The predicted fatigue damage evolution from the energy-based model are found to agree well with the experimental data.


SPE Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Zhanke Liu ◽  
Steven Tipton ◽  
Dinesh Sukumar

Summary Coiled tubing (CT) integrity is critical for well intervention operations in the field. To monitor and manage tubing integrity, the industry has developed a number of computer models over the past decades. Among them, low-cycle fatigue (LCF) modeling plays a paramount role in safeguarding tubing integrity. LCF modeling of CT strings dates back to the 1980s. Recently, novel algorithms have contributed to developments in physics-based modeling of tubing fatigue and plasticity. When CT trips into and out of the well, it goes through bending/straightening cycles under high differential pressure. Such tough conditions lead to low- or ultralow-cycle fatigue, limiting CT useful life. The model proposed in this study is derived from a previous one and is based on rigorously derived material parameters to compute the evolution of state variables from a wide range of loading conditions. Through newly formulated plasticity and strain parameters, a physics-based damage model predicts CT fatigue life, along with diametral growth and wall thinning. The revised modeling approach gives results for CT damage accumulation, diametral growth, and wall thinning under realistic field conditions, with experimental validation. For 20 different CT alloys, it was observed that the model improved in accuracy overall by approximately 18.8% and consistency by 14.0%, for constant pressure data sets of more than 4,500 data points. The modeling results provide insights into the nonlinear nature of fatigue damage accumulation. This study allowed developing recommendations to guide future analytical modeling and experimental investigations, summarize theoretical findings in physics-based LCF modeling, and provide practical guidelines for CT string management in the field. The study provides a fundamental understanding of CT LCF and introduces novel algorithms in plasticity and damage.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1030 ◽  
Author(s):  
Jarosław Szusta ◽  
Andrzej Seweryn

This article presents an approach related to the modeling of the fatigue life of constructional metal alloys working under elevated temperature conditions and in the high-amplitude load range. The article reviews the fatigue damage accumulation criteria that makes it possible to determine the number of loading cycles until damage occurs. Results of experimental tests conducted on various technical metal alloys made it possible to develop a fatigue damage accumulation model for the LCF (Low Cycle Fatigue) range. In modeling, the material’s damage state variable was defined, and the damage accumulation law was formulated incrementally so as to enable the analysis of the influence of loading history on the material’s fatigue life. In the proposed model, the increment of the damage state variable was made dependent on the increment of plastic strain, on the tensile stress value in the sample, and also on the actual value of the damage state variable. The model was verified on the basis of data obtained from experiments in the field of uniaxial and multiaxial loads. Samples made of EN AW 2024T3 aluminum alloy were used for this purpose.


Sign in / Sign up

Export Citation Format

Share Document