Finite element simulations of fatigue crack growth and closureSun, W. Diss. Abstr. Int. July 1992 53 (1) 147 pp

1993 ◽  
Vol 15 (5) ◽  
pp. 440-440
2014 ◽  
Vol 891-892 ◽  
pp. 1675-1680
Author(s):  
Seok Jae Chu ◽  
Cong Hao Liu

Finite element simulation of stable fatigue crack growth using critical crack tip opening displacement (CTOD) was done. In the preliminary finite element simulation without crack growth, the critical CTOD was determined by monitoring the ratio between the displacement increments at the nodes above the crack tip and behind the crack tip in the neighborhood of the crack tip. The critical CTOD was determined as the vertical displacement at the node on the crack surface just behind the crack tip at the maximum ratio. In the main finite element simulation with crack growth, the crack growth rate with respect to the effective stress intensity factor range considering crack closure yielded more consistent result. The exponents m in the Paris law were determined.


2019 ◽  
pp. 147592171986572
Author(s):  
Chang Qi ◽  
Yang Weixi ◽  
Liu Jun ◽  
Gao Heming ◽  
Meng Yao

Fatigue crack propagation is one of the main problems in structural health monitoring. For the safety and operability of the metal structure, it is necessary to monitor the fatigue crack growth process of the structure in real time. In order to more accurately monitor the expansion of fatigue cracks, two kinds of sensors are used in this article: strain gauges and piezoelectric transducers. A model-based inverse finite element model algorithm is proposed to perform pattern recognition of fatigue crack length, and the fatigue crack monitoring experiment is carried out to verify the algorithm. The strain spectra of the specimen under cyclic load in the simulation and experimental crack propagation are obtained, respectively. The active lamb wave technique is also used to monitor the crack propagation. The relationship between the crack length and the lamb wave characteristic parameter is established. In order to improve the recognition accuracy of the crack propagation mode, the random forest and inverse finite element model algorithms are used to identify the crack length, and the Dempster–Shafer evidence theory is used as data fusion to integrate the conclusion of the two algorithms to make a more accountable and correct judge of the crack length. An experiment has been conducted to demonstrate the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document