Expression of the neural cell adhesion molecule (NCAM) on the haemopoietic cell line NALM-16

1992 ◽  
Vol 16 (3) ◽  
pp. 307-315 ◽  
Author(s):  
Kalpana Patel ◽  
Graham Frost ◽  
Rosalind Rossell ◽  
Barry Pizer ◽  
Adrian Gee ◽  
...  
1989 ◽  
Vol 169 (6) ◽  
pp. 2233-2238 ◽  
Author(s):  
L L Lanier ◽  
R Testi ◽  
J Bindl ◽  
J H Phillips

Neural cell adhesion molecule (N-CAM) is a membrane glycoprotein expressed on neural and muscle tissues that is involved in homotypic adhesive interactions. We have demonstrated that N-CAM also is expressed on hematopoietic cells, and is recognized by the anti-Leu-19 mAb. Leu-19 is preferentially expressed on NK cells and T lymphocytes that mediate MHC-unrestricted cytotoxicity, but is also present on some myeloid leukemia cell lines. On NK cells, T cells, the KG1a.5 hematopoietic cell line, and a neuroblastoma cell line, Leu-19 is a approximately 140-kD polypeptide with N-linked carbohydrates and abundant sialic acid residues. Sequential immunoprecipitation and peptide mapping demonstrated that the Leu-19 and N-CAM molecules expressed on leukocyte and neuroblastoma cell lines are similar structures. These findings suggest that the Leu-19 antigen on leukocytes may be involved in cell adhesion, analogous to the function on N-CAM on neural cells.


1998 ◽  
Vol 140 (5) ◽  
pp. 1177-1186 ◽  
Author(s):  
Juan L. Brusés ◽  
Urs Rutishauser

The up- and downregulation of polysialic acid–neural cell adhesion molecule (PSA–NCAM) expression on motorneurons during development is associated respectively with target innervation and synaptogenesis, and is regulated at the level of PSA enzymatic biosynthesis involving specific polysialyltransferase activity. The purpose of this study has been to describe the cellular mechanisms by which that regulation might occur. It has been found that developmental regulation of PSA synthesis by ciliary ganglion motorneurons is not reflected in the levels of polysialyltransferase-1 (PST) or sialyltransferase-X (STX) mRNA. On the other hand, PSA synthesis in both the ciliary ganglion and the developing tectum appears to be coupled to the concentration of calcium in intracellular compartments. This study documents a calcium dependence of polysialyltransferase activity in a cell-free assay over the range of 0.1–1 mM, and a rapid sensitivity of new PSA synthesis, as measured in a pulse–chase analysis of tissue explants, to calcium ionophore perturbation of intracellular calcium levels. Moreover, the relevant calcium pool appears to be within a specific intracellular compartment that is sensitive to thapsigargin and does not directly reflect the level of cytosolic calcium. Perturbation of other major second messenger systems, such as cAMP and protein kinase–dependent pathways, did not affect polysialylation in the pulse chase analysis. These results suggest that the shuttling of calcium to different pools within the cell can result in the rapid regulation of PSA synthesis in developing tissues.


Sign in / Sign up

Export Citation Format

Share Document