The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis

1992 ◽  
Vol 19 (1-3) ◽  
pp. 141-159 ◽  
Author(s):  
L.C. Price ◽  
L.M. Wenger
Keyword(s):  
2021 ◽  
Author(s):  
V. Samoilenko ◽  
I. Goncharov ◽  
P. Trushkov ◽  
N. Oblasov ◽  
M. Veklich ◽  
...  

2018 ◽  
Vol 7 (1) ◽  
pp. 94
Author(s):  
Anatole Eugene Djieto Lordon ◽  
Mbohlieu YOSSA ◽  
Christopher M Agyingi ◽  
Yves Shandini ◽  
Thierry Stephane Kuisseu

Gravimetric studies using the ETOPO1-corrected high resolution satellite-based EGM2008 gravity data was used to define the surface extent, depth to basement and shape of the Mamfe basin. The Bouguer anomaly map was produced in Surfer 11.0. The Fast Fourier Transformed data was analyzed by spectral analysis to remove the effect of the regional bodies in the study area. The residual anomaly map obtained was compared with the known geology of the study area, and this showed that the gravity highs correspond to the metamorphic and igneous rocks while the gravity lows match with Cretaceous sediments. Three profiles were drawn on the residual anomaly map along which 2D models of the Mamfe basin were drawn. The modeling was completed in Grav2dc v2.06 software which uses the Talwini’s algorithm and the resulting models gave the depth to basement and the shape of the basement along the profiles. After processing and interpretation, it was deduced that the Mamfe basin has an average length and width of 77.6 km and 29.2 km respectively, an average depth to basement of 5 km and an overall U-shape basement. These dimensions (especially the depth) theoretically create the depth and temperature conditions for petroleum generation. 


2011 ◽  
Vol 149 (1) ◽  
pp. 19-38 ◽  
Author(s):  
ALI SHEKARIFARD ◽  
FRANÇOIS BAUDIN ◽  
KAZEM SEYED-EMAMI ◽  
JOHANN SCHNYDER ◽  
FATIMA LAGGOUN-DEFARGE ◽  
...  

AbstractOrganic petrography and geochemical analyses have been carried out on shales, carbonaceous shales and coals of the Shemshak Group (Upper Triassic–Middle Jurassic) from 15 localities along the Alborz Range of Northern Iran. Thermal maturity of organic matter (OM) has been investigated using vitrinite reflectance, Rock-Eval pyrolysis and elemental analysis of kerogen. Reflectance of autochthonous vitrinite varies from 0.6 to 2.2% indicating thermally early-mature to over-mature OM in the Shemshak Group, in agreement with other maturity parameters used. The shales of the Shemshak Group are characterized by poor to high residual organic carbon contents (0.13 to 5.84%) and the presence of hydrogen-depleted OM, predominantly as a consequence of oxidation of OM at the time of deposition and the hydrogen loss during petroleum generation. According to light-reflected microscopy results, vitrinite/vitrinite-like macerals are dominant in the kerogen concentrates from the shaly facies. The coals and carbonaceous shales of the Shemshak Group show a wide range in organic carbon concentration (3.5 to 88.6%) and composition (inertinite- and vitrinite-rich types), and thereby different petroleum potentials. Thermal modelling results suggest that low to moderate palaeo-heat flow, ranging from 47 to 79 mW m−2 (57 mW m−2 on average), affected the Central-Eastern Alborz basin during Tertiary time, the time of maximum burial of the Shemshak Group. The maximum temperature that induced OM maturation of the Shemshak Group seems to be related to its deep burial rather than to a very strong heat flow related to an uppermost Triassic–Liassic rifting. The interval of petroleum generation in the most deeply buried part of the Shemshak Group (i.e. Tazareh section) corresponds to Middle Jurassic–Early Cretaceous times. Exhumation of the Alborz Range during Late Neogene time, especially along the axis of the Central-Eastern Alborz, where maximum vitrinite reflectance values are recorded, probably destroyed possible petroleum accumulations. However, on the northern flank of the Central-Eastern Alborz, preservation of petroleum accumulations may be expected. The northern part of the basin therefore seems the best target for petroleum exploration.


2018 ◽  
Vol 170 ◽  
pp. 620-642 ◽  
Author(s):  
Mohammed Hail Hakimi ◽  
Abdulwahab S. Alaug ◽  
Abdulghani F. Ahmed ◽  
Madyan M.A. Yahya ◽  
Mohamed M. El Nady ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document