Passive pressure by method of slices

Keyword(s):  
1967 ◽  
Vol 38 (8) ◽  
pp. 1145-1147 ◽  
Author(s):  
H. L. Dunegan ◽  
C. A. Tatro

Author(s):  
Kyle M. Rollins ◽  
Andrew E. Sparks ◽  
Kris T. Peterson

Static and dynamic (statnamic) lateral load tests were performed on a full-scale 3 × 3 pile group driven in saturated low-plasticity silts and clays. The 324-mm outside diameter steel pipe piles were attached to a reinforced concrete pile cap (2.74 m square in plan and 1.21 m high), which created an essentially fixed-head end constraint. A gravel backfill was compacted in place on the back side of the cap. Lateral resistance was therefore provided by pile-soil-pile interaction as well as by base friction and passive pressure on the cap. In this case, passive resistance contributed about 40 percent of the measured static capacity. The measured resistance was compared with that computed by several techniques. The log-spiral method provided the best agreement with measured resistance. Estimates of passive pressure computed using the Rankine or GROUP p-y curve methods significantly underestimated the resistance, whereas the Coulomb method overestimated resistance. The wall movement required to fully mobilize passive resistance in the dense gravel backfill was approximately 0.06 times the wall height, which is in good agreement with design recommendations. The p-multipliers developed for the free-head pile group provided reasonable estimates of the pile-soil-pile resistance for the fixed-head pile group. Default p-multipliers in the program GROUP led to a 35 percent overestimate of pile capacity. Overall dynamic resistance was typically 100 to 125 percent higher than static; however, dynamic passive pressure resistance was over 200 percent higher than static.


1988 ◽  
Vol 64 (4) ◽  
pp. 1537-1545 ◽  
Author(s):  
H. Ohtaka ◽  
J. C. Hogg ◽  
R. H. Moreno ◽  
P. D. Pare ◽  
R. R. Schellenberg

The isobaric and isovolumetric properties of intrapulmonary arteries were evaluated by placing a highly compliant balloon inside arterial segments. The passive pressure-volume (P-V) curve was obtained by changing volume (0.004 ml/s) and measuring pressure. The isobaric active volume change (delta V) or isovolumetric active pressure change (delta P) generated by submaximal histamine was measured at four different transmural pressures (Ptm's) reached by balloon inflation. The maximal delta P = 11.2 +/- 0.6 cmH2O (mean +/- SE) was achieved at 30.8 +/- 1.2 cmH2O Ptm and maximal delta V = 0.20 +/- 0.02 ml at 16.7 +/- 1.7 cmH2O Ptm. The P-V relationships were similar when volume was increased after either isobaric or isovolumetric contraction. The calculated length-tension (L-T) relationship showed that the active tension curve was relatively flat and that the passive tension at the optimal length was 149 +/- 11% of maximal active tension. These data show that 1) a large elastic component operates in parallel with the smooth muscle in intralobar pulmonary arteries, and 2) the change in resistance associated with vascular expansion of the proximal arteries is independent of the type of contraction that occurs in the more distal arterial segments.


1989 ◽  
Vol 66 (4) ◽  
pp. 1694-1698 ◽  
Author(s):  
R. H. Moreno ◽  
P. D. Pare

To study the interaction between tracheal cartilage and the trachealis muscle we measured trachealis muscle contraction in response to electrical field stimulation and methacholine in excised tracheal segments from control and papain-treated rabbits. Papain treatment softened the tracheal cartilage and altered the passive pressure volume curve of the tracheal segments at transmural pressures below 5 cmH2O. The transmural pressure required for maximal active changes in volume (isobaric contraction) with electrical field stimulation was increased in papain-treated animals. We conclude that tracheal cartilage provides a preload which stretches the trachealis muscle toward optimal length and that papain, by altering the elastic mechanical properties of cartilage, decreases this preload.


2011 ◽  
Vol 31 (5-6) ◽  
pp. 845-848 ◽  
Author(s):  
Sanjay Kumar Shukla ◽  
Daryoush Habibi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document