2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mahdy Khari ◽  
Khairul Anuar Kassim ◽  
Azlan Adnan

Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratiol/d= 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing ofs/dfrom 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio ofs/dmore than6dis large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand.


Author(s):  
Gang-qiang Kong ◽  
Qing Yang ◽  
Mao-tian Luan

The study was performed based on an analysis of model test results of 3×3 pile group and confirmed the reliability and accuracy of determining negative skin friction (NSF) using numerical modeling of fluid-soild interaction. A 3D numerical model with surface load and soil consolidation was established using FLAC3D, which focused on the mechanism of NSF and its influence factors such as friction of pile-soil interface, spacing of pile and time of consolidation. The results obtained under different cases in an engineering practice were finally compared with measured and empirical data, showing that it is necessary to consider surface load and soil consolidation when dealing with NSF. The results also indicated the analysis with surface load and soil consolidation could simulate the developing process of NSF and produce a more accurate outcome — closer to measured data. The NSF increases rapidly at beginning and then slowly down, finally stabilized at a constant as soil consolidation progresses. Due to pile group effects, the piles at the centre had a smaller downdrag and settlement than those at corner or at edges; pile group effects became more obvious when pile spacing decreased.


1973 ◽  
Vol 10 (3) ◽  
pp. 428-438 ◽  
Author(s):  
G. G. Meyerhof ◽  
Gopal Ranjan

Following Part I on vertical piles and Part II on inclined piles the present Part III deals with the general principles for estimating ultimate capacity of a pile bent under inclined load. The results of loading tests on two model pile bents with depth/diameter ratios of 13 and 23 for free standing bents and 15 and 25 for piled bents are presented. Test results on free standing and piled bents are reported in compact and dense states of packing of sand. Bents with vertical and batter piles have been tested under inclinations of load varying from vertical to horizontal.The experimental results are discussed and conclusions regarding the behavior of free standing and piled bents under inclination of load, type of bent, and pile cap are drawn.


Sign in / Sign up

Export Citation Format

Share Document