Effect of Poisson's ratio and the far-field boundary conditions on the accuracy of finite element calculations. Short communication

Holzforschung ◽  
2009 ◽  
Vol 63 (5) ◽  
Author(s):  
Hiroshi Yoshihara

Abstract In this research, Poisson's ratio of plywood as obtained by a tension test was examined by varying the width of the specimen. The tension tests were conducted on five-plywood of lauan (Shorea sp.) with various widths, and Young's moduli and Poisson's ratios of the specimens were measured. Finite element calculations were independently conducted. A comparison of the experimental results with those of finite element analysis revealed that Young's modulus could be obtained properly when the width of the plywood strip varied. In contrast, the width of the plywood strip should be large enough to determine Poisson's ratio properly.


Author(s):  
M Grujicic ◽  
G Arakere ◽  
T He ◽  
M Gogulapati ◽  
B A Cheeseman

A series of transient non-linear dynamic finite-element method (FEM) analyses pertaining to the interaction of a single-ply plain-woven balanced square textile-fabric armour with a spherical steel projectile is carried out in order to compare the corresponding results obtained for two different yarn models: (a) a solid FEM model in which the warp and weft yarns are represented using first-order three-dimensional solid elements and (b) a membrane model in which the same yarns are represented using second-order membrane elements. The analyses are carried out under different yarn—yarn and projectile—fabric frictional conditions and under different far-field boundary conditions applied to the edges of the fabric. The results obtained showed that the two sets of analyses yield comparable predictions regarding the temporal evolution and the spatial distribution of the deformation and damage fields within the fabric, regarding the ability of the fabric to absorb the projectile's kinetic energy and regarding the relative contributions of the main energy absorbing mechanisms. The work also confirmed the roles yarn—yarn and projectile—fabric friction play in the impact process as well as the effect of the far-field boundary conditions applied to the edges of the fabric.


2016 ◽  
Vol 33 (8) ◽  
pp. 2421-2447 ◽  
Author(s):  
João Paulo Pascon

Purpose The purpose of this paper is to deal with large deformation analysis of plane beams composed of functionally graded (FG) elastic material with a variable Poisson’s ratio. Design/methodology/approach The material is assumed to be linear elastic, with a Poisson’s ratio varying according to a power law along the thickness direction. The finite element used is a plane beam of any-order of approximation along the axis, and with four transverse enrichment schemes, which can describe constant, linear, quadratic and cubic variation of the strain along the thickness direction. Regarding the constitutive law, five materials are adopted: two homogeneous limiting cases, and three intermediate FG cases. The effect of both finite element kinematics and distribution of Poisson’s ratio on the mechanical response of a cantilever is investigated. Findings In accordance with the scientific literature, the second scheme, in which the transverse strain is linearly variable, is sufficient for homogeneous long (or thin) beams under bending. However, for FG short (or moderate thick) beams, the third scheme, in which the transverse strain variation is quadratic, is needed for a reliable strain or stress distribution. Originality/value In the scientific literature, there are several studies regarding nonlinear analysis of functionally graded materials (FGMs) via finite elements, analysis of FGMs with constant Poisson’s ratio, and geometrically linear problems with gradually variable Poisson’s ratio. However, very few deal with finite element analysis of flexible beams with gradually variable Poisson’s ratio. In the present study, a reliable formulation for such beams is presented.


Vibration ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 157-173 ◽  
Author(s):  
Guadalupe Leon ◽  
Hung-Liang Chen

In this paper, the exact solution of the Timoshenko circular beam vibration frequency equation under free-free boundary conditions was determined with an accurate shear shape factor. The exact solution was compared with a 3-D finite element calculation using the ABAQUS program, and the difference between the exact solution and the 3-D finite element method (FEM) was within 0.15% for both the transverse and torsional modes. Furthermore, relationships between the resonance frequencies and Poisson’s ratio were proposed that can directly determine the elastic constants. The frequency ratio between the 1st bending mode and the 1st torsional mode, or the frequency ratio between the 1st bending mode and the 2nd bending mode for any rod with a length-to-diameter ratio, L/D ≥ 2 can be directly estimated. The proposed equations were used to verify the elastic constants of a steel rod with less than 0.36% error percentage. The transverse and torsional frequencies of concrete, aluminum, and steel rods were tested. Results show that using the equations proposed in this study, the Young’s modulus and Poisson’s ratio of a rod can be determined from the measured frequency ratio quickly and efficiently.


Author(s):  
George Lucas Dias ◽  
Ricardo Rodrigues Magalhães ◽  
Danton Diego Ferreira ◽  
Bruno Henrique Groenner Barbosa

The knowledge of materials' mechanical properties in design during product development phases is necessary to identify components and assembly problems. These are problems such as mechanical stresses and deformations which normally cause plastic deformation, early fatigue or even fracture. This article is aimed to use particle swarm optimization (PSO) and finite element inverse analysis to determine Young's Modulus and Poisson's ratio from a cantilever beam, manufactured in ASTM A36 steel, subjected to a load of 19.6 N applied to its free end. The cantilever beam was modeled and simulated using a commercial FEA software. Constriction Factor Method (PSO variation) was used and its parameters were analyzed in order to improve errors. PSO results indicated Young's Modulus and Poisson's ratio errors of around 1.9% and 0.4%, respectively, when compared to the original material properties. Improvement in the data convergence and a reduction in the number of PSO iterations was observed. This shows the potentiality of using PSO along with Finite Element Inverse Analysis for mechanical properties evaluation.


Sign in / Sign up

Export Citation Format

Share Document