Significance of AE crack monitoring in fracture toughness evaluation and non-linear rock fracture mechanics

Author(s):  
T. Hashida ◽  
H. Takahashi
Author(s):  
Kunio Onizawa ◽  
Katsuyuki Shibata ◽  
Masahide Suzuki ◽  
Daisuke Kato ◽  
Yinsheng Li

Using the probabilistic fracture mechanics analysis code PASCAL, we studied the treatment method of an embedded crack and the fracture toughness evaluation methods on the probability of crack initiation and fracture of a reactor pressure vessel (RPV). For calculating the stress intensity factor (SIF) of an embedded crack, the ASME and CRIEPI procedures were introduced into the PASCAL code. The CRIEPI method enables us to calculate the SIF values at three points on the crack tip. Under a severe pressurized thermal shock (PTS) condition, the crack growth analysis methods with different SIF calculation points and crack growth directions are compared. To evaluate precisely the fracture toughness after neutron irradiation, the new fracture toughness curves based on the Weibull distribution were incorporated into the PASCAL code. The calculated results with these new curves showed little difference in the conditional probabilities of RPV fracture as compared to the curve currently used in the U.S.


2018 ◽  
Vol 47 (2) ◽  
pp. 91-95 ◽  
Author(s):  
Fatih Bozkurt ◽  
Eva Schmidová

In engineering applications, steels are commonly used in various areas. The mechanical members are exposed to different loading conditions and this subject can be investigated in fracture mechanics. Fracture toughness (KIC) is the important material property for fracture mechanics. Determination of this properties is possible using a compact tension specimen, a single edge notched bend or three-point loaded bend specimen, which are standardized by different institutions. Researchers underline that these standardized methods are complex, the manufacturing process is difficult, they require special fixtures for loading during the experiment and the test procedures are time consuming. Alternative methods are always being sought by researchers. In this work, two different approaches are investigated for S355 steels. In the first method, a circumferentially cracked round bar was loaded in tensile mode and pulled till failure. Using suitable equations, fracture toughness can be calculated. In the second method, a circumferentially notched bar specimen without fatigue pre-cracking was loaded in a tensile machine. By means of fracture load values, fracture toughness was determined by the proposed equations. It can be stated that these two different approaches for calculating fracture toughness are simple, fast and economical.


Sign in / Sign up

Export Citation Format

Share Document