Enhanced sensitivity to the mutagenic action of methylnitrosourea in a transgenic clone of tobacco carrying the E. coli gene ada

Author(s):  
I. Baburek ◽  
T. Gichner ◽  
J. Briza ◽  
J. Veleminsky ◽  
G. Margison
2007 ◽  
Vol 54 (3) ◽  
pp. 459-468 ◽  
Author(s):  
Jadwiga Nieminuszczy ◽  
Elzbieta Grzesiuk

Environmental and endogenous alkylating agents generate cytotoxic and mutagenic lesions in DNA. Exposure of prokaryotic cells to sublethal doses of DNA alkylating agents induces so called adaptive response (Ada response) involving the expression of a set of genes which allows the cells to tolerate the toxic and mutagenic action of such agents. The Ada response includes the expression of four genes: ada, alkA, alkB, and aidB. The product of ada gene, Ada protein, is an activator of transcription of all four genes. DNA bases damaged by alkylation are removed by distinct strategies. The most toxic lesion 3meA is removed by specific DNA glycosylase initiating base excising repair. The toxic and mutagenic O6meG is repaired directly by methyltransferases. 1meA and 3meC are corrected by AlkB DNA dioxygenase. The mechanisms of action of E. coli AlkB dioxygenase and its human homologs ABH2 and ABH3 are described in more details.


Microbiology ◽  
2011 ◽  
Vol 157 (4) ◽  
pp. 957-965 ◽  
Author(s):  
Adriana R. Krapp ◽  
María Victoria Humbert ◽  
Néstor Carrillo

The soxRS regulon protects Escherichia coli cells against superoxide and nitric oxide. Oxidation of the SoxR sensor, a [2Fe–2S]-containing transcriptional regulator, triggers the response, but the nature of the cellular signal sensed by SoxR is still a matter of debate. In vivo, the sensor is maintained in a reduced, inactive state by the activities of SoxR reductases, which employ NADPH as an electron donor. The hypothesis that NADPH levels affect deployment of the soxRS response was tested by transforming E. coli cells with genes encoding enzymes and proteins that lead to either build-up or depletion of the cellular NADPH pool. Introduction of NADP+-reducing enzymes, such as wheat non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase or E. coli malic enzyme, led to NADPH accumulation, inhibition of the soxRS regulon and enhanced sensitivity to the superoxide propagator methyl viologen (MV). Conversely, expression of pea ferredoxin (Fd), a redox shuttle that can oxidize NADPH via ferredoxin-NADP(H) reductase, resulted in execution of the soxRS response in the absence of oxidative stress, and in higher tolerance to MV. Processes that caused NADPH decline, including oxidative stress and Fd activity, correlated with an increase in total (NADP++NADPH) stocks. SoxS expression can be induced by Fd expression or by MV in anaerobiosis, under conditions in which NADPH is oxidized but no superoxide can be formed. The results indicate that activation of the soxRS regulon in E. coli cells exposed to superoxide-propagating compounds can be triggered by depletion of the NADPH stock rather than accumulation of superoxide itself. They also suggest that bacteria need to finely regulate homeostasis of the NADP(H) pool to enable proper deployment of this defensive response.


1998 ◽  
Vol 180 (5) ◽  
pp. 1030-1036 ◽  
Author(s):  
G. P. Ferguson ◽  
R. I. Creighton ◽  
Y. Nikolaev ◽  
I. R. Booth

ABSTRACT The mechanisms by which Escherichia coli cells survive exposure to the toxic electrophile N-ethylmaleimide (NEM) have been investigated. Stationary-phase E. coli cells were more resistant to NEM than exponential-phase cells. The KefB and KefC systems were found to play an important role in protecting both exponential- and stationary-phase cells against NEM. Additionally, RpoS and the DNA-binding protein Dps aided the survival of both exponential- and stationary-phase cells against NEM. Double mutants lacking both RpoS and Dps and triple mutants deficient in KefB and KefC and either RpoS or Dps had an increased sensitivity to NEM in both exponential- and stationary-phase cells compared to mutants missing only one of these protective mechanisms. Stationary- and exponential-phase cells of a quadruple mutant lacking all four protective systems displayed even greater sensitivity to NEM. These results indicated that protection by the KefB and KefC systems, RpoS and Dps can each occur independently of the other systems. Alterations in the level of RpoS in exponentially growing cells correlated with the degree of NEM sensitivity. Decreasing the level of RpoS by enriching the growth medium enhanced sensitivity to NEM, whereas a mutant lacking the ClpP protease accumulated RpoS and gained high levels of resistance to NEM. A slower-growing E. coli strain was also found to accumulate RpoS and had enhanced resistance to NEM. These data emphasize the multiplicity of pathways involved in protecting E. coli cells against NEM.


1998 ◽  
Vol 180 (16) ◽  
pp. 4314-4318 ◽  
Author(s):  
G. P. Ferguson ◽  
I. R. Booth

ABSTRACT The role of the tripeptide glutathione in the growth and survival of Escherichia coli cells has been investigated. Glutathione-deficient mutants leak potassium and have a reduced cytoplasmic pH. These mutants are more sensitive to methylglyoxal than the parent strain, indicating that in the absence of glutathione-dependent detoxification, acidification of the cytoplasm cannot fully protect cells. However, increasing the intracellular pH of the glutathione-deficient strain resulted in enhanced sensitivity to methylglyoxal. This suggests that acidification of the cytoplasm can provide some protection to E. coli cells in the absence of glutathione. In the presence of the Kdp system, glutathione-deficient mutants are highly sensitive to methylglyoxal. This is due to the higher intracellular pH in these cells. In the absence of methylglyoxal, the presence of the Kdp system in a glutathione-deficient strain also leads to an extended lag upon dilution into fresh medium. These data highlight the importance of glutathione for the regulation of the K+ pool and survival of exposure to methylglyoxal.


1951 ◽  
Vol 85 (821) ◽  
pp. 119-136 ◽  
Author(s):  
M. Demerec ◽  
G. Bertani ◽  
J. Flint
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document