Effect of interferon on herpes simplex virus replication in murine macrophage-like cell lines

1986 ◽  
Vol 6 (3) ◽  
pp. 161-169 ◽  
Author(s):  
Richard J. Salo ◽  
Andrew P. Ortega
1996 ◽  
Vol 7 (3) ◽  
pp. 128-137 ◽  
Author(s):  
T.H. Bacon ◽  
B.A. Howard

The replication of herpes simplex virus type 1 (HSV-1) or HSV-2 in MRC-5 cells infected at 0.01 pfu cell−1 treated continuously for 72 h, was inhibited more efficiently by penciclovir than aciclovir ( p = 0.0001). However, multiple cycles of replication were required in order to distinguish the compounds. Virus from cultures treated for 72 h with either compound, at 3 or 10 μg ml−1 was resistant to penciclovir and aciclovir (50% effective concentrations > 10 μg ml−1), but infectivity titres of supernatants from these aciclovirtreated cultures were higher than for penciclovir. Increased production of resistant virus in aciclovirtreated cultures may be the consequence of the less potent inhibition of virus replication by aciclovir. Penciclovir caused prolonged inhibition of HSV-1 and HSV-2 replication in three human cell lines infected at 1 pfu cell−1 following treatment for 18 h, whereas virus replication resumed rapidly after withdrawal of aciclovir. Neither compound showed prolonged activity after 18 h treatment, when the multiplicity of infection was reduced to 0.01 pfu cell−1. This surprising observation prompted experiments testing the effect of repeated pulse treatment in cultures infected at low multiplicity. Penciclovir inhibited HSV-1 replication significantly more effectively than aciclovir in MRC-5 cells infected at 10−4 pfu cell−1 treated daily for 6 h ( p < 0.001, n = 5) but only a trend was observed for HSV-2 ( p = 0.06, n = 6).


2002 ◽  
Vol 76 (4) ◽  
pp. 1995-1998 ◽  
Author(s):  
Karen L. Mossman ◽  
James R. Smiley

ABSTRACT Interferon inhibits virus replication through multiple mechanisms. Here we show that herpes simplex virus proteins ICP0 and ICP34.5 overcome interferon-induced barriers to viral transcription and translation, respectively. These cytokine-induced antiviral mechanisms are differentially expressed in established cell lines: U2OS cells do not mount the IFN-induced mechanism targeted by ICP0, and Vero cells may be defective for the mechanism targeted by ICP34.5.


2021 ◽  
Vol 188 ◽  
pp. 105022
Author(s):  
Diana M. Alvarez ◽  
Luisa F. Duarte ◽  
Nicolas Corrales ◽  
Patricio C. Smith ◽  
Pablo A. González

2009 ◽  
Vol 83 (23) ◽  
pp. 12399-12406 ◽  
Author(s):  
Vineet D. Menachery ◽  
David A. Leib

ABSTRACT The type I interferon (IFN) cascade is critical in controlling viral replication and pathogenesis. Recognition pathways triggered by viral infection rapidly induce the type I IFN cascade, often in an IFN regulatory factor 3 (IRF-3)-dependent fashion. This dependence predicts that loss of IRF-3 would render early recognition pathways inoperative and thereby impact virus replication, but this has not been observed previously with herpes simplex virus type 1 (HSV-1) in vitro. In this study, HSV-1-infected IRF-3−/− bone marrow-derived dendritic cells (BMDCs) and macrophages supported increased HSV replication compared to control cells. In addition, IRF-3-deficient BMDCs exhibited delayed type I IFN synthesis compared to control cells. However, while IFN pretreatment of IRF-3−/− BMDCs resulted in reduced virus titers, a far greater reduction was seen after IFN treatment of wild-type cells. This suggests that even in the presence of exogenously supplied IFN, IRF-3−/− BMDCs are inherently defective in the control of HSV-1 replication. Together, these results demonstrate a critical role for IRF-3-mediated pathways in controlling HSV-1 replication in cells of the murine immune system.


2002 ◽  
Vol 4 (3) ◽  
pp. 229-239 ◽  
Author(s):  
Miguel Sena-Esteves ◽  
J�rgen A. Hampl ◽  
Sara M. Camp ◽  
Xandra O. Breakefield

2011 ◽  
Vol 85 (19) ◽  
pp. 9945-9955 ◽  
Author(s):  
S. J. Allen ◽  
K. R. Mott ◽  
A. A. Chentoufi ◽  
L. BenMohamed ◽  
S. L. Wechsler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document