Steady-state and picosecond investigation of hot carrier-phonon interactions in 2D systems

1986 ◽  
Vol 174 (1-3) ◽  
pp. A446
Author(s):  
J. Shah ◽  
A. Pinczuk ◽  
A.C. Gossard ◽  
W. Wiegmann ◽  
K. Kash
Keyword(s):  
1986 ◽  
Vol 174 (1-3) ◽  
pp. 363-374 ◽  
Author(s):  
J. Shah ◽  
A. Pinczuk ◽  
A.C. Gossard ◽  
W. Wiegmann ◽  
K. Kash
Keyword(s):  

1992 ◽  
Vol 06 (07) ◽  
pp. 805-936 ◽  
Author(s):  
X.L. Lei ◽  
N.J.M. Horing

The balance-equation approach to nonlinear hot-carrier transport theory, formulated by Lei and Ting (1984), is addressed in this comprehensive review. A central feature is the role of strong electron-electron interactions in promoting rapid thermalization about the drifted transport state and the concomitant substantial simplification of the transport theory. This physical feature is embodied in the initial density matrix chosen to represent the unperturbed carrier system. Force and energy balance equations are formulated for the dc steady state, ac dynamic and transient cases of charge conduction, including memory effects. The scattering mechanisms include impurity and phonon interactions along with dynamic nonlocal screening effects due to carrier-carrier interactions. Both linear and nonlinear resistivities are discussed in the degenerate and nondegenerate statistical regimes. Interesting phenomena such as electron cooling and thermal noise and diffusion are discussed as well. Semiconductor microstructure transport is described for both linear and nonlinear hot carrier conduction. In this connection, quasi-2D-systems, heterojunctions, and quantum well superlattices are treated with attention to steady state, transient and high frequency transport, including, for example, superlattice plasmon resonance structure. Type-II superlattice transport is reviewed as well as type-I, and electron-hole drag is treated in conjunction with negative minority electron mobility in a quantum well. Multivalley semiconductors are discussed in some detail. Furthermore, attention is also focused on the center-of-mass velocity fluctuation, Langevin-type equation and thermal noise and diffusion for microstructures and multivalley systems. A number of particularly important phenomena are examined from the balance-equation point of view, such as nonequilibrium phonons, higher order scattering effects and weak localization, hydrodynamic equations for weakly nonuniform systems, and the intracollisional field effect. Alternative formulations and interpretations of the balance-equation approach are reviewed. The distinction between this many-particle, isothermal, balance-equation theory and the noninteracting (single-particle) adiabatic transport theory is discussed to clarify issues subject to controversy in the literature. Finally, we give a brief review of recent developments in the balance-equation approach: investigation of the distribution function in balance-equation theory, improved calculations for GaAs/AlGaAs heterojunctions, extension of the balance equations to an abitrary energy band and recent work on superlattice miniband transport.


Soft Matter ◽  
2021 ◽  
Author(s):  
Pasquale Digregorio ◽  
Demian Levis ◽  
Leticia Cugliandolo ◽  
Giuseppe Gonnella ◽  
Ignacio Pagonabarraga

We provide a comprehensive quantitative analysis of localized and extended topological defects in the steady state of 2D passive and active repulsive Brownian disk systems. We show that, both in...


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


2021 ◽  
Author(s):  
Wu Lan ◽  
Yuan Peng Du ◽  
Songlan Sun ◽  
Jean Behaghel de Bueren ◽  
Florent Héroguel ◽  
...  

We performed a steady state high-yielding depolymerization of soluble acetal-stabilized lignin in flow, which offered a window into challenges and opportunities that will be faced when continuously processing this feedstock.


2008 ◽  
Vol 45 ◽  
pp. 161-176 ◽  
Author(s):  
Eduardo D. Sontag

This paper discusses a theoretical method for the “reverse engineering” of networks based solely on steady-state (and quasi-steady-state) data.


Sign in / Sign up

Export Citation Format

Share Document