Studies on Water in the Hydration Chamber of a Modified Electron Microscope

Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ahmad Al-Sarraj ◽  
Khaled M. Saoud ◽  
Abdelaziz Elmel ◽  
Said Mansour ◽  
Yousef Haik

Abstract In this paper, we report oxidation time effect on highly porous silver oxide nanowires thin films fabricated using ultrasonic spray pyrolysis and oxygen plasma etching method. The NW’s morphological, electrical, and optical properties were investigated under different plasma etching periods and the number of deposition cycles. The increase of plasma etching and oxidation time increases the surface roughness of the Ag NWs until it fused to form a porous thin film of silver oxide. AgNWs based thin films were characterized using X-ray diffraction, scanning electron microscope, transmission electron microscope, X-ray photoemission spectroscopy, and UV–Vis spectroscopy techniques. The obtained results indicate the formation of mixed mesoporous Ag2O and AgO NW thin films. The Ag2O phase of silver oxide appears after 300 s of oxidation under the same conditions, while the optical transparency of the thin film decreases as plasma etching time increases. The sheet resistance of the final film is influenced by the oxidation time and the plasma application periodicity. Graphic abstract


2016 ◽  
Vol 45 (43) ◽  
pp. 17312-17318 ◽  
Author(s):  
Eun-Kyung Kim ◽  
Dasom Park ◽  
Nabeen K. Shrestha ◽  
Jinho Chang ◽  
Cheol-Woo Yi ◽  
...  

An aqueous solution based synthetic method for binder-free Ag2Te thin films using ion exchange induced chemical transformation of Ag/AgxO thin films.


2013 ◽  
Vol 710 ◽  
pp. 170-173
Author(s):  
Lian Ping Chen ◽  
Yuan Hong Gao

It is hardly possible to obtain rare earth doped CaWO4thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize CaWO4:(Eu3+,Tb3+) thin films at room temperature. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that (Eu3+,Tb3+)-doped CaWO4films have a tetragonal phase. When the ratio of n (Eu)/n (Tb) in the solution is up to 3:1, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Tb element; on the contrary, when the ratio in the solution is lower than 1:4, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Eu element. Under the excitation of 242 nm, sharp emission peaks at 612, 543, 489 and 589 nm have been observed for CaWO4:(Eu3+,Tb3+) thin films.


RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39859-39868 ◽  
Author(s):  
Shaofeng Shao ◽  
Yunyun Chen ◽  
Shenbei Huang ◽  
Fan Jiang ◽  
Yunfei Wang ◽  
...  

Pt/GQDs/TiO2 nanocomposite thin film-based gas sensors show tunable VOC sensing behaviour at room temperature under visible-light activation.


2005 ◽  
Vol 879 ◽  
Author(s):  
M. Abid ◽  
C. Terrier ◽  
J-P Ansermet ◽  
K. Hjort

AbstractFollowing the theory, ferromagnetism is predicted in Mn- doped ZnO, Indeed, ferromagnetism above room temperature was recently reported in thin films as well as in bulk samples made of this material. Here, we have prepared Mn doped ZnO by electrodeposition. The samples have been characterized by X-ray diffraction and spectroscopic methods to ensure that the dopants are substitutional. Some samples exhibit weak ferromagnetic properties at room temperature, however to be useful for spintronics this material need additional carriers provided by others means.


2020 ◽  
Vol 8 (2) ◽  
pp. 536-542 ◽  
Author(s):  
Yuanqi Huang ◽  
Ang Gao ◽  
Daoyou Guo ◽  
Xia Lu ◽  
Xiao Zhang ◽  
...  

A thermostable Fe-doped γ-Ga2O3 thin film with a high room temperature saturation magnetic moment of 5.73 μB/Fe has been obtained for the first time.


2016 ◽  
Vol 1141 ◽  
pp. 51-53
Author(s):  
Chetan Zankat ◽  
V.M. Pathak ◽  
Pratik Pataniya ◽  
G.K. Solanki ◽  
K.D. Patel ◽  
...  

Amorphous SnSe thin films were deposited by thermal evaporation technique on glass substrates kept at room temperature in a vacuum better than 10-5Torr. A detailed study of structural and optical properties of 150 nm thin film was carried out. The selected area diffraction patterns obtained by TEM for this thin film were analyzed by a new method that involves accurate determination of lattice parameters by image processing software. The obtained results are in good agreement with the JCPDS data. Optical transmission spectra obtained at room temperature were analyzed to study optical properties of deposited thin films. It has been found that indirect carrier transition is responsible for optical absorption process in the deposited thin films.


2013 ◽  
Vol 668 ◽  
pp. 681-685
Author(s):  
Ya Xue ◽  
Hai Ping He ◽  
Zhi Zhen Ye

In this study, the authors have presented results for fabricated ZnO based FET and the UV-photoconductive characteristics of Na doped ZnMgO thin films. The electrical measurements confirmed that the conductivity of the Na doped ZnMgO thin film is p-type, and the carrier mobility was estimated to be 2.3 cm2V-1S-1. Moreover, after exposed to the 365 nm ultraviolet light, the Na doped ZnMgO thin films still exhibited p-type behavior under gate voltage ranging from -5 to 2 V, and the Id increased a little while the carrier mobility did not change much. The photocurrent was measured under a bias of 6 V in air at room temperature. The films performed a higher current intensity after the illumination. The instantaneous rise of the photocurrent was completed when exposed to the 365 nm ultraviolet for 20 s, after switching the ultraviolet off the photocurrent decayed in a slower rate. The enhance rate of photocurrent was about 1.33 %. Conclusively, Na is a considerable acceptor dopant for making high quality p-type ZnO films, and the tiny change in the photocurrent of p-type Na doped ZnMgO thin film made it relatively stable when fabricating LEDs and other optoelectronic devices.


Author(s):  
Anish Philip ◽  
Yifan Zhou ◽  
Girish Tewari ◽  
Sebastiaan Van Dijken ◽  
Maarit Karppinen

Photo-controlled room-temperature hard magnets could open new horizons for high-density information storage. For this, the material should be fabricated as device-integrable (conformal, stretchable, transparent, etc.) thin films and preferably from...


2019 ◽  
Vol 09 (03) ◽  
pp. 1950025
Author(s):  
Dionizy Czekaj ◽  
Agata Lisińska-Czekaj

Research on synthesis, characterization and determination of processing — structure — property relationships of commercially important ferroelectric thin films has been performed. The sol–gel type solution deposition technique was applied to produce good quality thin films of [Formula: see text][Formula: see text]TiO3 (BST60/40) chemical composition on the stainless steel substrates. The thin films were characterized in terms of their microstructure, crystal structure, phase composition, piezoelectric and dielectric properties. It was found that the BST60/40 thin film adopted the cubic structure at room temperature with an elementary cell parameter [Formula: see text] Å. Morphology of the thin film surface was studied with Atomic Force Microscopy (AFM). Average roughness of the thin films surface was found ([Formula: see text]m). Piezoresponse Force Microscopy (PFM) was applied for the thin film characterization. Active piezoelectric regions were found in BST60/40 thin film. Therefore, dielectric response measured at room temperature was studied in assumption of piezoelectric electric equivalent circuit.


Sign in / Sign up

Export Citation Format

Share Document