Shear layer flow in a channel: estimate on the dimension of the attractor

1993 ◽  
Vol 65 (1-2) ◽  
pp. 135-153 ◽  
Author(s):  
Alain Miranville
1988 ◽  
Author(s):  
JAYANT SABNIS ◽  
SANG-KEUN CHOI ◽  
RICHARD BUGGELN ◽  
HOWARD GIBELING

1992 ◽  
Vol 238 ◽  
pp. 73-96 ◽  
Author(s):  
M. A. Z. Hasan

The flow over a backward-facing step with laminar separation was investigated experimentally under controlled perturbation for a Reynolds number of 11000, based on a step height h and a free-stream velocity UO. The reattaching shear layer was found to have two distinct modes of instability: the ‘shear layer mode’ of instability at Stθ ≈ 0.012 (Stθ ≡ fθ/UO, θ being the momentum thickness at separation and f the natural roll-up frequency of the shear layer); and the ‘step mode’ of instability at Sth ≈ 0.185 (Sth ≡ fh/U0). The shear layer instability frequency reduced to the step mode one via one or more stages of a vortex merging process. The perturbation increased the shear layer growth rate and the turbulence intensity and decreased the reattachment length compared to the unperturbed flow. Cross-stream measurements of the amplitudes of the perturbed frequency and its harmonics suggested the splitting of the shear layer. Flow visualization confirmed the shear layer splitting and showed the existence of a low-frequency flapping of the shear layer.


AIAA Journal ◽  
1986 ◽  
Vol 24 (4) ◽  
pp. 680-682
Author(s):  
Arthur Rizzi ◽  
Charles J. Purcell

2017 ◽  
Vol 95 (10) ◽  
pp. 894-899
Author(s):  
Mouhammad El Hassan ◽  
Laurent Keirsbulck

Passive control of the flow over a deep cavity at low subsonic velocity is considered in the present paper. The cavity length-to-depth aspect ratio is L/H = 0.2. particle image velocimetry (PIV) measurements characterized the flow over the cavity and show the influence of the control method on the cavity shear layer development. It is found that both the “cylinder” and the “shaped cylinder”, placed upstream from the cavity leading edge, result in the suppression of the aero-acoustic coupling and highly reduce the cavity noise. It should be noted that the vortical structures impinge at almost the same location near the cavity downstream corner with and without passive control. The present study allows to identify an innovative passive flow control method of cavity resonance. Indeed, the use of a “shaped cylinder” presents similar suppression of the cavity resonance as with the “cylinder” but with less impact on the cavity flow. The “shaped cylinder” results in a smaller shear layer growth than the cylinder. Velocity deficiency and turbulence levels are less pronounced using the “shaped cylinder”. The “cylinder” tends to diffuse the vorticity in the cavity shear layer and thus the location of the maximum vorticity is more affected as compared to the “shaped cylinder” control. The fact that the “shaped cylinder” is capable of suppressing the cavity resonance, despite the vortex shedding and the high frequency forcing being suppressed, is of high interest from fundamental and applied points of view.


1999 ◽  
Vol 396 ◽  
pp. 319-344 ◽  
Author(s):  
R. J. LINGWOOD ◽  
N. PEAKE

In this paper we consider the causal response of the inviscid shear-layer flow over an elastic surface to excitation by a time-harmonic line force. In the case of uniform flow, Brazier-Smith & Scott (1984) and Crighton & Oswell (1991) have analysed the long-time limit of the response. They find that the system is absolutely unstable for sufficiently high flow speeds, and that at lower speeds there exist certain anomalous neutral modes with group velocity directed towards the driver (in contradiction of the usual radiation condition of out-going disturbances). Our aim in this paper is to repeat their analysis for more realistic shear profiles, and in particular to determine whether or not the uniform-flow results can be regained in the limit in which the shear-layer thickness on a length scale based on the fluid loading, denoted ε, becomes small. For a simple broken-line linear shear profile we find that the results are qualitatively similar to those for uniform flow. However, for the more realistic Blasius profile very significant differences arise, essentially due to the presence of the critical layer. In particular, we find that as ε → 0 the minimum flow speed required for absolute instability is pushed to considerably higher values than was found for uniform flow, leading us to conclude that the uniform-flow problem is an unattainable singular limit of our more general problem. In contrast, we find that the uniform-flow anomalous modes (written as exp (ikx − iωt), say) do persist for non-zero shear over a wide range of ε, although now becoming non-neutral. Unlike the case of uniform flow, however, the k-loci of these modes can now change direction more than once as the imaginary part of ω is increased, and we describe the connection between this behaviour and local properties of the dispersion function. Finally, in order to investigate whether or not these anomalous modes might be realizable at a finite time after the driver is switched on, we evaluate the double Fourier inversion integrals for the unsteady flow numerically. We find that the anomalous mode is indeed present at finite time, once initial transients have propagated away, not only for impulsive start-up but also when the forcing amplitude is allowed to grow slowly from a small value at some initial instant. This behaviour has significant implications for the application of standard radiation conditions in wave problems with mean flow.


Sign in / Sign up

Export Citation Format

Share Document