initial droplet size
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 2)

H-INDEX

10
(FIVE YEARS 1)

2019 ◽  
Vol 5 (5) ◽  
pp. eaav8801 ◽  
Author(s):  
Johan Bielecki ◽  
Max F. Hantke ◽  
Benedikt J. Daurer ◽  
Hemanth K. N. Reddy ◽  
Dirk Hasse ◽  
...  

The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.


2019 ◽  
Vol 36 (2) ◽  
pp. 445-465
Author(s):  
Jai Manik ◽  
Amaresh Dalal ◽  
Ganesh Natarajan

Purpose The purpose of this paper is to numerically investigate the effect of various parameters such as density ratio, surface wettabilities and Weber number on the droplet dripping and detachment process. Design/methodology/approach By using algebraic volume of fluid method, the governing equations are solved using a collocated finite volume approach in two-dimensions. Findings The results indicate that, for small densities of droplet, it adheres to the surface except when the surface is hydrophobic, while an increase in Weber number or presence of an additional droplet in the vicinity led to detachment. Originality/value The paper explores various characteristics of a droplet when two competing forces, namely, gravity and surface tension, act simultaneously. The detachment is observed for a given initial droplet size, as it becomes denser in an uniform gravitational field. The effect of droplet affinity for two droplets is also presented using the simulations.


2018 ◽  
Vol 2 (4) ◽  
pp. 67 ◽  
Author(s):  
Saule Aidarova ◽  
Altynay Sharipova ◽  
Assem Issayeva ◽  
Botagoz Mutaliyeva ◽  
Aiym Tleuova ◽  
...  

The synthesis and properties of submicrocontainers with a shell of nanoparticles of silicon dioxide and a core of polymerized 3-(Trimethoxysilyl) propyl methacrylate loaded with 5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) are considered. The resulting containers were characterized by scanning electron microscopy SEM, laser correlation spectroscopy and thermogravimetric analysis. The obtained submicrocontainers show low polydispersity with a small increase in size in comparison with the initial droplet size of the Pickering emulsion. The Zeta potential of the final containers was sufficiently negative at pH7 to be stable. The maximum release of encapsulated biocide was observed over approximately 24–27 h with a lease of about 78% of the encapsulated biocide during 3.5 h. The effectiveness of the encapsulated biocide by the Pickering emulsion technique was studied by tests on the growth rate of a microfungi colony (Aspergillus niger, Aspergillus awamori) and the growth rate of the bacteria Bacillus cereus. The test shows that the submicrocontainers of DCOIT facilitate a growth inhibition of 70% against 52% for the free biocide after 5 days; this is due to the fact that free biocide loses its activity promptly, while the encapsulated biocide is released gradually, and thus retains its effectivity for a longer time.


2018 ◽  
Author(s):  
Johan Bielecki ◽  
Max F. Hantke ◽  
Benedikt J. Daurer ◽  
Hemanth K. N. Reddy ◽  
Dirk Hasse ◽  
...  

The possibility of imaging single proteins constitutes an exciting challenge for X-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available X-ray lasers and, as we demonstrate here, contamination of the aerosolised molecules by non-volatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet-size during aerosolisation. Here we show that with our electrospray injector we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next generation X-ray lasers, constitute an important stepping stone towards the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.


2018 ◽  
Vol 846 ◽  
pp. 411-427 ◽  
Author(s):  
Zhaoxin Ren ◽  
Bing Wang ◽  
Gaoming Xiang ◽  
Longxi Zheng

An oblique detonation wave in two-phase kerosene–air mixtures over a wedge is numerically studied for the first time. The features of initiation and stabilisation of the two-phase oblique detonation are emphasised, and they are different from those in previous studies on single-phase gaseous detonation. The gas–droplet reacting flow system is solved by means of a hybrid Eulerian–Lagrangian method. The two-way coupling for the interphase interactions is carefully considered using a particle-in-cell model. For discretisation of the governing equations of the gas phase, a WENO-CU6 scheme (Hu et al., J. Comput. Phys., vol. 229 (23), 2010, pp. 8952–8965) and a sixth-order compact scheme are employed for the convective terms and the diffusive terms, respectively. The inflow parameters are chosen properly from real flight conditions. The fuel vapour, droplets and their mixture are taken as the fuel in homogeneous streams with a stoichiometric ratio, respectively. The effects of evaporating droplets and initial droplet size on the initiation, transition from oblique shock to detonation and stabilisation are elucidated. The two-phase oblique detonation wave is stabilised from the oblique shock wave induced by the wedge. As the mass flow rate of droplets increases, a shift from a smooth transition with a curved shock to an abrupt one with a multi-wave point is found, and the initiation length of the oblique detonation increases, which is associated with the increase of the transition pressure. By increasing the initial droplet size, a smooth transition pattern is observed, even if the equivalence ratio remains constant, and the transition pressure decreases. The factor responsible is incomplete evaporation before the detonation fronts, which results in a complicated flame structure, including regimes of formation of oblique detonation, evaporative cooling of droplets and post-detonation reaction.


Author(s):  
Konstantina Vogiatzaki ◽  
Cyril Crua ◽  
Robert Morgan ◽  
Morgan Heikal

Designing future ultra-high efficiency, ultra-low emission engines requires an in depth understanding of the multiscale,multi-phase phenomena taking place in the combustion chamber. The performance of the fuel deliverysystem is key in the air fuel mixture formation and hence the combustion characteristics, however in most spraymodelling approaches is not considered directly. Thus, it is important to understand how the selection of modelsthat mimic injection process affect predictions. In this paper we present an Eulerian-Lagrangian framework basedon OpenFOAM libraries to model spray injection dynamics. The framework accounts for primary droplet formation(based on a parcel method with predefined initial droplet size distribution), secondary droplet breakup, evaporationand heat transfer. In order to account for the interaction of droplets with turbulence, simulations were performedwithin the LES context with two different turbulence models. A systematic variation of the key injection parameters(parcel number, parcel size distribution) of the parcel method as well as the grid size was considered. Varying theparcel number affects the initial droplet size distribution which in turn, depending on the selection of the turbulenceand the evaporation sub-models, affects: spray dispersion; spray penetration; and subsequent droplet size distribution.Results were validated against the baseline experimental data for evaporating ECN Spray A with n-dodecanechosen as a surrogate for Diesel fuel.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4703


2016 ◽  
Vol 81 (5) ◽  
pp. E1124-E1129 ◽  
Author(s):  
Chutima Thongkaew ◽  
Benjamin Zeeb ◽  
Monika Gibis ◽  
Jörg Hinrichs ◽  
Jochen Weiss

Sign in / Sign up

Export Citation Format

Share Document