Generalized eringen problem: influence of axial force on random vibration response of simply supported beam

1987 ◽  
Vol 4 (4) ◽  
pp. 255-265 ◽  
Author(s):  
Isaac Elishakoff
2014 ◽  
Vol 518 ◽  
pp. 120-125 ◽  
Author(s):  
Xiao Jing Li

The random vibration of simply-supported beam is simplified of the random vibration of the SDOF theory ,the paper analyse its random response. We get the displacement power spectral density function the velocity power spectral density and the acceleration power spectral density function of the maximum displacement point. The same example is calculated by ANSYS, it also get the same results.It proved that using the finite element analysis software ANSYS to anlaysis the random vibration of the simply-supported beam has advantages of fast speedhigh precisioneasy stepsthe small error and so on..


Author(s):  
Gonglian Dai ◽  
Meng Wang ◽  
Tianliang Zhao ◽  
Wenshuo Liu

<p>At present, Chinese high-speed railway operating mileage has exceeded 20 thousand km, and the proportion of the bridge is nearly 50%. Moreover, high-speed railway design speed is constantly improving. Therefore, controlling the deformation of the bridge structure strictly is particularly important to train speed-up as well as to ensure the smoothness of the line. This paper, based on the field test, shows the vertical and transverse absolute displacements of bridge structure by field collection. What’s more, resonance speed and dynamic coefficient of bridge were studied. The results show that: the horizontal and vertical stiffness of the bridge can meet the requirements of <b>Chinese “high-speed railway design specification” (HRDS)</b>, and the structure design can be optimized. However, the dynamic coefficient may be greater than the specification suggested value. And the simply supported beam with CRTSII ballastless track has second-order vertical resonance velocity 306km/h and third-order transverse resonance velocity 312km/h by test results, which are all coincide with the theoretical resonance velocity.</p>


1984 ◽  
Vol 51 (3) ◽  
pp. 519-525 ◽  
Author(s):  
P. Seide

The large deflections of a simply supported beam, one end of which is free to move horizontally while the other is subjected to a moment, are investigated by means of inextensional elastica theory. The linear theory is found to be valid for relatively large angles of rotation of the loaded end. The beam becomes transitionally unstable, however, at a critical value of the bending moment parameter MIL/EI equal to 5.284. If the angle of rotation is controlled, the beam is found to become unstable when the rotation is 222.65 deg.


2013 ◽  
Vol 394 ◽  
pp. 364-367
Author(s):  
Yong Chun Cheng ◽  
Yu Ping Shi ◽  
Guo Jin Tan

The related researches show that , the sunshine temperature field can cause the changes of the natural frequencies of the simply-supported beam. In order to recover the influence law of the temperature field on the natural frequencies, the calculation method of the natural frequencies of the simply-supported beam bridge is formed. First, according to the principles of stress equivalence, transform the sunshine temperature field to the partiality axis forces. Based on the Bernoulli model, the calculation method of the natural frequencies of the simply-supported beam under the partiality axis forces at both ends is formed. At last, take one simply-supported T beam as the object of numerical modeling and verify the validity and the reliability of this method.


Sign in / Sign up

Export Citation Format

Share Document